
Access Control for a Database-Defined
Network

Noemi Glaeser‡ Anduo Wang∗
‡University of South Carolina ∗Temple University

nglaeser@email.sc.edu adw@temple.edu

Abstract—Software-defined networking (SDN) al-
lows the insertion of software that manages the
network through a centralized controller. While the
controller improves network management through
features such as network-wide and higher-level ab-
straction, the urgent requirement of security is still
less well-studied. Ravel, a database-defined controller,
like many others currently exposes all network states
to its users without implementing any security mea-
sures. This position paper proposes a novel way to
implement access control, a specific aspect of security
for SDN, in the setting of the Ravel controller.

Index Terms—Software-defined networking (SDN),
databases, access control.

I. INTRODUCTION
Sometimes referred to as the last bastion of

mainframe computing, networking today is increas-
ingly complicated and fragile. Practitioners are
locked in solutions, both protocols and software,
that are tightly bound to vendor-specific hardware.
Additionally, every component must be individually
configured at a low level, and administrators must
have extensive knowledge of the network in order
to enforce the desired functionality and security.

In order for networks to continue to advance, the
field of networking needs to borrow a page from
other computing disciplines, such as programming
languages, distributed systems, operating systems,
and database research. Software-defined network-
ing (SDN) is the latest effort to leverage these
disciplines towards a more manageable network.

In SDN, operators insert network management
software via a central controller. One such con-
troller is Ravel, which utilizes a standard relational
database to represent and manipulate the network.
An important but less-studied issue in SDN con-
trollers is security, and Ravel is no exception. This
position paper addresses a portion of the security
issue. We do not offer a comprehensive solution, but

focus specifically on extending Ravel to incorporate
access control.

II. BACKGROUND AND MOTIVATION

SDN seeks to simplify network administration
by introducing abstraction. This is achieved by
connecting each network component to a central-
ized controller, reducing switches and other middle-
boxes to dummy pieces of hardware that only take
routing commands from the controller. With this
abstraction, changes to the network can be made
much more easily and efficiently through the con-
troller, without requiring extensive knowledge of
the network. SDN is still a young area of research,
however, and more efforts are needed before SDN
can be deployed more broadly beyond the current,
narrow point solutions.

Among many other implementations, Ravel pro-
poses the use of databases as the abstraction for
managing SDN. Ravel (see Figure 1) is a database-
defined controller which represents the network
using a standard relational database [5]. Using a
database as a controller allows for abstraction in the
form of views, which can be tailored to the needs
of each controller application, essentially serving as
an API between the controller and the apps. Using
SQL triggers, Ravel can also enforce coordination
between the various applications modifying the
network. All this is done through a PostgreSQL
interface.

By building on relational database research,
Ravel deals with many of the same issues as other
researchers in the field. This gives us the advantage
of having a large body of previous research at our
disposal do draw from for improvements, as well
as an older community in addition to that of the
still-budding field of SDN.

Security, although a crucial aspect of networking,



has not been extensively studied in the context
of SDN. Network architecture was developed in a
more innocent age, but as attacks became a more
pertinent threat, security measures had to be retrof-
fited onto the existing networks. These post hoc
implementations gave rise to an excess of disparate
devices (such as router ACLs, firewalls, NATs, and
other middleboxes in addition to VLANs and other
complicated link-layer technologies) which are dif-
ficult to manage and coordinate, often resulting in
weaker security [1], [3]. SDN simplifies network
security, but security requirements are still under
development, and there is no clear consensus on
what the desirable characteristics of a network are
that would ensure its integrity. Like most other
SDN controllers today, Ravel does not yet have any
security measures in place.

One suggestion is to restrict the direction of in-
formation flow in a network. In this approach, nodes
are assigned with security levels (top secret, secret,
confidential, unclassified), and flows are restricted
according to the security levels of the nodes they
connect and/or pass through to avoid information
leakage from secure to less secure switches, users,
or applications.

Other efforts involved the use of access control
lists (ACLs). ACLs allow a network administrator
to explicitly specify what information users are
authorized to access. When a user then puts in a re-
quest, only the authorized information is presented,
in accordance with the ACL(s). For each rule he
or she wishes to implement, the administrator must

Fig. 1. Ravel is the realization of SDN by database.

list the principal (the user the rule applies to), the
object (which node/table/etc. the rule applies to),
and the privilege (e.g. read, write, delete). Although
at first, this seems like a reasonable expectation,
such specifications are very manual and become
increasingly tedious as size of the network and
users grows. Even a network with only a couple
thousand users quickly becomes unmanageable for
the operator. This kind of explicit specification
simply does not scale up [4]. In this project, we
propose a novel way to define access control lists
and address the access control problem for SDN for
the database-defined controller Ravel.

III. PROPOSED SOLUTION
Our novel proposal seeks to achieve a more

concise and flexible specification of access control
through the use of reflective specification of access
control rules. The intuition of reflective specifica-
tion is the idea of stating the intent rather than
the extent of rules. Consider, for instance, a large
network where nodes can be leased to so-called
tenants. Alice owns a portion of the nodes, and Bob
owns some other nodes in the network. The active
flows in the network are recorded in a reachability
matrix, which lists the source and destination nodes
of every flow. We wish to restrict the flows visible
to tenants. Instead of a series of statements like
“Alice can view flows that initiate in Alice’s part
of the network”, “Bob can view flows that initiate
in Bob’s part of the network”, and so on for every
tenant, we can express the intent of the policy by
writing, “tenants can view flows that initiate in
their part of the network” [4]. This way we can
restrict the information available to users while also
providing a scalable security mechanism.

This content-based access control is realized
through declarative queries (i.e. SQL queries). As
a realization of this principle, we added this type
of access control to Ravel, the aforementioned
database-defined network controller, implementing
these queries with PostgreSQL. We used SQL
views defined in terms of the current user, effec-
tively creating a single view that tailors itself to
each distinct user.

A. Access Control for Network Resources
Users’ access to network resources is based on

the network service-level agreement (SLA), which
lists the tenants and their nodes. One resource that

2



Fig. 2. Working example of a network with two tenants.

tenants should only have limited access to is the
topology of the network: each tenant should only
be able to see his or her own nodes. In order to
enforce this requirement, we first create a query
that generates an access control list (ACL) for the
topology table. The ACL is represented in the form
of the topology_acl view, which queries both
the SLA table and the network topology table:
CREATE OR REPLACE VIEW topology_acl AS (

SELECT s.name AS principal, sid, nid, isactive
FROM topology, sla s
WHERE

topology.sid IN (
SELECT nodeid FROM sla WHERE name = s.name)

AND
topology.nid IN (

SELECT nodeid FROM sla WHERE name = s.name)
);

The access control view is an intermediate step.
It is important to note that it is a view, i.e. a vir-
tual table, meaning it automatically updates when
changes are made to the tables referenced in its
definition. Because views are virtual, they also take
up no storage space: they consist only of a query
which is executed each time the view is referenced.

Next, we create the topology_tenant view
as follows and make it accessible to all users:
CREATE OR REPLACE VIEW topology_tenant AS (

SELECT sid, nid, isactive FROM topology_acl
WHERE principal = current_user);

GRANT SELECT ON topology_tenant TO PUBLIC;

The power of topology_tenant view comes
from its use of the current_user variable.
Because users authenticate with the controller, i.e.
the database, this variable is unique to every user.

Fig. 3. Access control for network resources.

Thus, the topology_tenant view is automat-
ically updated and tailored to each user. It con-
tains only the entries of the object_acl view
where the principal is the current user, thus only
displaying the relevant permitted (according to the
SLA) information to the current user. If we con-
nected to the network as Alice, for instance, the
topology_tenant view would only contain the
rows from topology_acl where the value of the
“principal” column is ’alice’ (see Figure III-A).

The same methodology was used to restrict ac-
cess to the flows installed in the network, which are
logged in the reachabiligy matrix (the rm table).
Below is an example tenant view for the reachabil-
ity matrix:
CREATE VIEW rm_tenant AS (
SELECT fid, src, dst FROM rm WHERE rm.src IN (

SELECT nodeid FROM sla WHERE name IN (
SELECT p1 FROM config_sla
WHERE p2=current_user )

UNION
SELECT nodeid FROM sla
WHERE name = current_user )

AND
rm.dst IN (
SELECT nodeid FROM sla WHERE name IN (
SELECT p2 FROM config_sla
WHERE p1=current_user )

UNION
SELECT nodeid FROM sla
WHERE name = current_user )

AND (
rm.src IN (
SELECT nodeid FROM sla
WHERE name = current_user )

OR
rm.dst IN (
SELECT nodeid FROM sla
WHERE name = current_user))

3



Fig. 4. Access control for network updates.

);

The reachability matrix is discussed in more
detail in the following section.

B. Access Control for Network Updates
We also used SQL queries for access control

on the write operations to the network. This was
done through the use of triggers on the tables
reflecting the network state. A trigger is a user-
defined procedure which is automatically executed
whenever a specific database condition is met (this
encompasses any database events such as insertions,
deletions, and updates). In this case, any insertion
(e.g. a new network flow) into the network’s reach-
ability matrix rm causes a trigger to fire, which
executes a procedure that checks the proposed
insertion against the SLA and the current user.

For instance, if the user Alice attempts to insert
a new flow into our working network example
from Figure 2, the trigger on the rm table is fired,
running a function which checks whether or not
this flow is compliant with the network’s whitelist
(dictated by the SLA and the network provider). If
the flow adhere’s to the whitelist, it is inserted as a
new entry into the rm table and the network itself
changes accordingly. Otherwise, nothing happens.
(See Figure III-B.)

C. Challenge: Controlling Network Updates
Any network update usually involves a nontrivial

computation. In the case of the reachability matrix,
this computation is the calculation of the path

the flow will take through the network. This path
should also be compliant with the SLA. In order to
enforce this restriction, we define a new view called
routingtp_tenant which, like the aforemen-
tioned views, also automatically tailors itself to
each particular user. The routingtp_tenant
view is a representation of a portion of the net-
work’s topology: it contains only the nodes of the
current user and all users he or she is permit-
ted to communicate with. In our example, Alice
has been whitelisted to talk to Bob, so Alice’s
routingtp_tenant view contains her nodes
and Bob’s nodes (see Figure III-C).
CREATE OR REPLACE VIEW routingtp_tenant AS (
SELECT sid, nid, isactive FROM topology_acl
WHERE principal = current_user

UNION
SELECT sid, nid, isactive FROM topology_acl
WHERE principal IN (
SELECT p2 FROM config_sla
WHERE p1 = current_user)

UNION
SELECT sid, nid, isactive FROM topology
WHERE sid IN (
SELECT sid FROM topology_acl
WHERE principal = current_user)

AND nid IN (
SELECT sid FROM topology_acl
WHERE principal IN (
SELECT p2 FROM config_sla

WHERE p1 = current_user))
UNION
SELECT sid, nid, isactive FROM topology
WHERE nid IN (
SELECT sid FROM topology_acl
WHERE principal = current_user)

AND sid IN (
SELECT sid FROM topology_acl
WHERE principal IN (
SELECT p2 FROM config_sla

WHERE p1 = current_user))
);

Although both this and the rm_tenant view
definition are rather long, SQL is the most intuitive
language in which to define such policies. Such
a definition still defines the intent rather than the
extent of the access control policy and is dynamic
and updatable. Achieving the same functionality
would take many more lines of code in another
language such as Python, C, or Java.

Now, we can direct the path algorithm
to only reference nodes contained in the
routingtp_tenant view, thus ensuring
that the path each flow takes only contains nodes
from this view so the paths are also compliant
with the SLA.

Using a database as the SDN controller provides

4



Fig. 5. Controlling network updates.

two key features that can be exploited to sim-
plify access control: (1) users authenticate with the
database upon login and (2) the database language
SQL easily yields itself to the statement of concise,
flexible, and expressive authorization policies. The
database approach gives us higher-level and finer-
grained control over database policies. Besides al-
lowing us to specify access control rules more con-
cisely, this system is dynamic, requiring minimal
changes by the administrator upon addition of a
new user.

As is often the case, implementing these features
was easier said than done. It soon became clear
that restricting read access had been comparatively
simple once we began to implement access control
for the write operation. There were always multiple
approaches for every issue, and each solution had
its own advantages and drawbacks. Often, simply
the promise that one approach would work was not
enough, since we also wanted the implementation
to be conceptually clean and practicable.

When determining the route a flow should take,
for instance, we needed to modify the Dijkstra
algorithm in place to only take into account the
allowed middleboxes, given each flow’s origin and
destination (for instance, the path for a flow orig-
inating from one of the admin’s nodes could be
calculated using the regular shortest path algorithm,
but a path originating in, say, one of Alice’s nodes
needed to be calculated so it would only be routed
through nodes to which Alice has read access.

In this case, we had several options: (1) create
alternate network state tables to pass to the Dijkstra
function (i.e. an rm’ table) or (2) modifying the
Dijkstra function at runtime. We opted for the latter
choice, modifying the trigger function to pass it the
routingtp_tenant table, as described above,
instead of the normal topology table. The former
would have needlessly commplicated coordination
between the routing app (which installs flows and
calculates the path they take) and other applications,
possibly even resulting in multiple, divergent in-
stances of the network base tables.

The final product has been included in an ex-
perimental branch of Ravel. Users can use Ravel’s
existing command-line interface (CLI) to load the
access control application and then add tenants,
modify the SLA, change the whitelist, etc. through
a customized application CLI.

ACKNOWLEDGEMENTS

This research was conducted as part of an NSF-
funded Research Experience for Undergraduates
(REU) held at Temple University in Philadelphia.
For an in-depth demonstration of Ravel’s new
features, follow the readme on our GitHub: http:
//github.com/ravel-net/REU-access-control. There
you can also find directions on how to download
Ravel. Ravel uses Mininet [2], which allows users
to create virtual networks within their own ma-
chines. By downloading Ravel, you can go through
our step-by-step tutorial on the access control de-
veloped in this project.

REFERENCES

[1] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: A protec-
tion architecture for enterprise networks. In Proceedings
of USENIX Security Symposium, Vancouver, B.C., Canada,
2006.

[2] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined networks.
In Proceedings of Hotnets, Monterey, CA, USA, 2010.

[3] A. Nayak, A. Reimers, N. Feamster, and R. Clark. Res-
onance: Dynamic access control for enterprise networks.
In Proceedings of WREN, Barcelona, Spain, 2009.

[4] L. E. Olson, C. A. Gunter, W. R. Cook, and M. Winslett.
Implementing reflective access control in sql. In Proceed-
ings of DBSec, Montreal, Canada, 2009.

[5] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey.
Ravel: A database-defined network. In Proceedings of
SOSR, Santa Clara, CA, USA, 2016.

5


