
Structural Semantics Management: an Application
of the Chase in Networking

Anduo Wang∗, Mubashir Anwar#, Fangping Lan∗, Matthew Caesar#
∗Temple University #UIUC

Abstract—The value of database in advancing networking
— in the paradigm shift from protocols to software-defined
networking — was once highlighted by database-inspired man-
agement of network states. Moving beyond factual states, this
paper considers semantics management a new frontier in the
databases-networking knowledge “transfer”, seeking to manage
network policies via structural manipulation of the corresponding
software (program). As a proof of concept, we make a case
of semantics-based network transformation with the datalog
structure and the chase, an elegant process for handling data
dependencies (semantics). Our main result is an extension of the
classic chase to fauré-log, a networking extension of datalog for
the richer networking policies.

Index Terms—Software-defined networking, network datalog,
semantics-based transformation, the Chase

I. INTRODUCTION

Database has played an active role in advancing networking
research, notably, database inspired distributed network state
management, a key enabler in the landscape changing move-
ment of software-defined networks (SDN). Before custom built
distributed key-value stores were available, production-scale
SDN platforms achieved strong consistency among the replicas
spanning across many datacenters by adopting the classical
ACID notion and existing transactional databases [1]. As a sec-
ond example, network verification, a topic that garnered wide
interest and later borrows heavily from software engineering
and formal methods, was first powered by datalog, which was
lauded as a general modeling tool that enables declarative
specification and fast simulation. With the clean and extensible
network state management in datalog, it is not surprising that
forerunners like Batfish [2] became a foundation (literally a
component system) to many subsequent (often imperative and
specialized) verifiers. If databases has helped shaping SDN,
what is the next frontier?

One pain point in networking today is semantic manage-
ment: As networks become more programmable (software-
defined), the networks themselves are viewed as programs
exhibiting richer semantics (policies), for which semantic
management — maintaining the policy properties embedded
in a network program — are pursued. Most tools for network
semantics management take a primitive behavioral approach
in which a network is modeled by a function whose inputs
(packets) are exhaustively examined. For example, a network
preserves its policy after an update if the tool cannot find
a single input packet that exhibits the function — e.g., for-
warding path for all packets — different. While great effort
went into modeling the network function, the focus is to speed
up evaluation on a huge input packet space. More advanced

techniques capable of exploiting the network structure itself,
however, is rare. The only structural approach we are aware is
network transformers [3], [4] that use syntactic heuristics (e.g.,
based on network symmetry) to compress a network model
into a smaller one while preserving certain properties.

In this paper, we consider semantic management a new
frontier in network advancement by databases, pursuing the
question: can we bring about structural network management
in which the intended semantic management — analysis and
transformation — intuitively maps into syntactic operation
on the corresponding network representation? As a first step
towards an affirmative answer, we study the concrete problem
of semantics-based network transformation with the chase.

The chase [5], [6] is an elegant syntactic rewrite that takes a
datalog query Q and a data dependency σ as input, transforms
Q into Q′ such that any “element” of Q that is incompatible
with σ is intuitively corrected in Q′ to satisfy σ, written
as chase(Q, σ) = Q′. To transform a network expressed in a
datalog program P, based on its policies given by a set of
data constraints (i.e. dependencies) Σ, our idea is to repeatedly
chase P with every dependency σ ∈ Σ, until we converge to a
unique new network P′ that properly reflects all policies.

The key is to extend the classic chase theory to networking.
We first identified a limitation to the classic chase: the classic
chase uses the standard query evaluation on a datalog pro-
gram’s instantiated database which is an incomplete database
that requires more advanced evaluation. To address this mis-
match, we generalize the chase to support richer semantics
by developing a new algorithm chase(P, σ), where both P, σ
are datalog rules: by instantiating the P into an incomplete
database instance I, and processing σ as a data query over I by
leveraging fauré-log evaluation, our earlier work on extending
datalog to partial network state [8]. Our main finding is that,
the new chase with a set of dependencies remains Church-
Rosser [7] — the new chasing result remains unique (up to
renaming of variable symbols) when terminating. While the
classic chase transforms P with restricted dependencies into
a single unique query, the new chase applicable to richer
dependencies converts P into a unique set of programs.

II. A RUNNING EXAMPLE

We motivate semantics-based networking transformation by
a running example in Figure 1: reachability between four
groups of hosts (A,B,C,D in the left and right ovals) is
controlled by the policies distributed at the 5 routers (center);
R2 is configured to block any packet header with source
matching B (i.e. prefix belonging to group B) and destination



Anduo Wang

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rw1: (B,C)→(A,C) fw: drop (B,D)

rw2: (A,C)→(A,D)

7

9

11
12

8

10

Fig. 1: Example reachability analysis in the presence of distributed
policies: can host belonging in group B successfully send packets to
hosts in D?

in D, R1 (R3, respectively) is set to rewrite header matching
the pattern (B, C) ((A, C)) to (A, C) ((A, D)). That is, if the
source of the header is in B (the destination of the header
is in C), then modify the source (destination) to a host in A

(D). In the presence of such rewrites, does R2, a node en-route
all pair-wise paths, still enforce the semantics — preventing
group B from contacting D? The answer is no. A host in B can
reach a destination in D by injecting instead a packet with a
header that matches (B, C). Detecting such security hole with a
existing behavioral analysis (e.g., Batfish [2]) requires insight
into what packet to examine: the relevant packets include not
only those with a header in (B, D), but any packet created at
group B.

Instead of improving behavioral analysis, we focus on
the packet-manipulating network structure itself, that is a
forwarding program P collectively driven by a set of policies
Σ (={rw1, rw2, fw}) in Figure 1. While behavioral analysis
partitions the packet space of P into the so called equivalent
classes (ECs) [9], [10], so as to quickly and thoroughly
exercise P’s behavior (semantics) as governed by the policy
set Σ, we ask, instead, how does Σ “modify” P structurally?
And our goal is to syntactically transform program P, based
on Σ, into a set of programs, such that each prescribes the
network behavior (packet processing) on a particular EC in a
more self-explanatory manner.

III. DATALOG AND THE CLASSIC CHASE

To realize the semantics-based network transformation in
§ II, we present a first attempt with datalog and the classic
chase. Datalog has long been accepted as an intuitive spec-
ification language for networking: the forwarding behavior
along R1R2R3 naturally translates to r in Listing 1 where
F(flow, source, destination, location, next− hop) is a
predicate expressing that location (a switch interface
in the network) forwards packet flow flow with header
(source, destination) to the next− hop. To transform the
network to incorporate the constraint that the destination

of a packet remains unchanged — simply a key depen-
dency k : flow → destination, we only need to chase r

with k, “correcting” the body of r — by the substitution
y1/y2, y1/y3, y1/y4, y1/y5, y1/y6, y1/y — to satisfy k.

1 r: R(x,y) :-F(f,x,y1,x,1), F(f,x2,y2,1,2), F(f,x3,y3,2,3),
F(f,x4,y4,3,4), F(f,x5,y5,4,5), F(f,x6,y6,5,6),
F(f,x7,y,6,y). % permitting header modifications along
R1R2R3

2 /* the result of chasing r with k */
3 R(x,y1) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),F(f,x3,y1,2,3),

F(f,x4,y1,3,4), F(f,x5,y1,4,5), F(f,x6,y1,5,6),
F(f,x7,y1,6,y1).

Listing 1: Example semantics-based network transformation

More generally, the classic chase is well-understood for data
dependencies in the form of an equality generation dependency
(egd) or tuple generation dependency (tgd). An example of
egd is the key dependency k given by δ1 in Listing 2, an
example tgd is referential dependency (the presence of certain
tuple in a relation implies the presence of another (probably in
a different relation)). Both tgd,egd can be written as datalog
rules if we allow (in)equality. This allows us to apply the chase
to a datalog program q by a dependency σ by running σ on the
“instantiation” of q (a symbolic database instance D): tgd is
just a regular datalog rule h : −b1, · · · , bn., the “evaluation”
of which proceeds on D by adding the new atom h to D
(program q); for an egd e : −b1, · · · , bn. (e is a substitution
y/y′ corresponding to an equality atom y = y′ in δ1), the
evaluation is similar to egd except that instead of adding new
goals to the rule, systematically applying the substitution.

1 δ1: y/y′ :-F(f,x,y,u,w), F(f,x′,y′,u′,w′). % datalog
representation of k

2 /* datalog rules with (in)equality (involving constants)
fails to evaluate on the symbolic database */

3 δ2: x/x’, y/y’ :-F(f,x,y,2,3), F(f,x’,y’,3,4), x ̸=1.2.3.4.
% a firewall at R2 that filters source 1.2.3.4

4 δ3: x/x’, y/y’ :-F(f,x,y,2,3), F(f,x’,y’,3,4), ¬B(x). % a
firewall at R2 that filters source from group B

Listing 2: Limitation of the classic chase

Unfortunately, the classic chase is too restricted for network-
ing. The chase is hard to process even for a simple firewall
policy for packets along R1R2R3 in Figure 1: δ2 in Listing 2
specifies a firewall that allows packets to pass R2 only when
its source is not 1.2.3.4, by involving the inequality with
1.2.3.4. δ3 describes a firewall policy filtering any packets with
a source from group B by using an auxiliary predicate B (not
a database relation). We observe that the difficulty in chasing
with policies given by such (general) datalog rules is that,
these general constructs are not “evaluatable” on a symbolic
database, because a symbolic database contains tuples with
unknown values. For example, consider chasing r with δ2,
we have F(f, x3, y3, 2, 3), F(f, x3, y3, 3, 4) in the symbolic
database D, but we cannot determine whether x3 ̸= 1.2.3.4
holds or not, because x3 in D is a “symbolic” constant. Unlike
a usual constant whose value we know, it is instantiated from
a variable, with an uncertain value! For the same reason, when
chasing with δ3, we cannot decide the auxiliary predicate
B(x3).

IV. EXTENDING THE CHASE TO Fauré-LOG

Our goal is to develop a chase-like process to transform
network behavior: given a network expressed in a datalog
program p, we seek a network policy expression Σ, and a
rewrite (chasing) process →Σ (or abbreviated as → when Σ

is clear), such that chasing p with Σ produces p′ (written as
p →Σp

′), where p′ is a new program that properly incorporates
the intention of Σ; the intention of Σ should be self-evident



(not buried in a complex program) and the policy embedding
rewrite → is self-explanatory (the modification to p reveals
how the structure in p interacts with Σ).

1 r1: R(x,y1) :-F(f,x,y1,x,1),F(f,x,y1,1,2),
F(f,x,y1,2,3),F(f,x,y1,3,4),F(f,x,y1,4,5),
F(f,x,y1,5,6),F(f,x,y1,6,y1), [¬B(x),¬(A(x),C(y1))].
% plain forwarding for prefixes not affected by any
policies (e.g.,B(x) means x belongs to B)

2 r2: R(x,y6) :-F(f,x,y1,x,1),F(f,x,y1,1,2), F(f,x,y1,2,3),
F(f,x,y1,3,4), F(f,x,y1,4,5), F(f,x,y6,5,6),
F(f,x,y6,6,y6), [¬B(x),A(x),¬D(y1),C(y1),D(y6)]. %
rewriting at R3 activated

3 r3: R(x,y6) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),
F(f,x2,y1,2,3),F(f,x2,y1,3,4),F(f,x2,y1,4,5),
F(f,x2,y6,5,6),F(f,x2,y6,6,y6),
[B(x),C(y1),A(x2),C(y1),D(y6)]. % rewriting at R1 and
R3 activated

Listing 3: r → {r1, r2, r3}: the “combined effect” of the policies
is clearly “pronounced” in the transformed program {r1, r2, r3}

For example, the network in Figure 1 (the forwarding
behavior) is given by a 4-rule program (along 4 paths,
namely R1R2R3, R1R2R5, R4R2R3, R4R2R5), each of which com-
putes reachability along a specific path. Specifically, The rule
r in Listing 1 specifies the network behavior along R1R2R3. We
seek an expression for the three policies, such that chasing the
program would embed those policies. Listing 3 illustrates the
transformation result of r into three new rules, corresponding
to the three equivalent classes determined by the policies. To
achieve such network transformation, the rest of the section
presents a design of Σ and a chase-like →.

A. Extending the chase to symbolic network
Chasing a datalog program p with a dependency δ reduces

to evaluating δ on the data instance D obtained from p, the
challenge is that D is incomplete in the sense that the constant
symbols instantiated from variables of p are not real constants,
their values are unknown. To address this mismatch, we
leverage incomplete databases research [8], [11]–[13]: based
on our prior work fauré-log, a datalog extension for partial
network information, we develop a dependency expression
called fauré-dependency for networking policies, and extend
the chase to fauré-dependency.

Specifically, we represent the symbolic instance during the
chasing, which we call the symbolic network, by conditional
tables (c-tables). C-tables allow both constants and variable
symbols, while the constant has a “face value”, the variable
symbols denote unknown/uncertain values that are constrained
by additional conditions (e.g., ¬(x = 1.2.3.4) denotes an
unknown value other than 1.2.3.4). Evaluation over such
symbolic network is thus handled by fauré-log evaluation [8]:
in a fauré-log program, the symbols include the usual constants
and variables, and a new type of symbols called c-variables
that are uncertain constants with additional conditions. The
variables symbols now range over the domain of constants
as well as the c-variables. The fauré-log evaluation enhances
standard datalog evaluation by also properly manipulating
the c-variable conditions. Fauré-dependency is just fauré-log
rules with two exceptions (1) all the variable symbols are c-
variables to capture the “uncertain constants” in a symbolic
network, (2) in the head (left of the rule) we allow the

chase actions (substitution and tuple generation), as shown in
Listing 4. Intuitively, a fauré-log rule derives a symbolic head
H(u) constrained by C(u) if the symbolic database contains
B1(u1), · · · , Bn(un) under the condition [C(u1), · · · , C(un)].
That is, a fauré-dependency expresses tgd and egd condition-
ally.

1 /* network query on symbolic state */
2 H(u)[C(u)] :-B1(u1),· · ·,Bn(un),[C(u1),· · ·,C(un)]. %

u,u1,...,un are tuples with constants and c-variables
3 /* network dependencies chasable on symbolic state */
4 H(u) :-B1(u1),· · ·,Bn(un),[C(u1),· · ·,C(un)]. % tgd: the

presence of Bi’s under the conditions Ci’s implies H
5 [x/y, C(u)] :-B1(u1),· · ·,Bn(un),[C(u1),· · ·,C(un)]. % egd:

substitute symbol x for y, C is a conjunction of
(in)equality and auxiliary predicates

Listing 4: Query symbolic network by fauré-log, represent policies
as fauré-dependency

Fauré-dependency can easily express all the network poli-
cies in Figure 1, as shown in Listing 5. For example, the header
rewrite at R1 is given by σ1, σ2: σ1 says that “irrelevant” packet
headers (not matching the rewrite condition, captured by
¬(B(x1), C(y1)), where B, C are auxiliary predicates asserting
group membership) in line 2) will pass R1 (through ingress
interface 1 to egress 2) without change, thus we have the
substitution in the head; on the other hand, σ2 asserts that
for packets matching the condition, the source address will
be rewritten to a new address x2 in A. The header rewrite at
R3 can be formulated similarly. The firewall at R2 is given
by σ3, σ4: σ3 describes the network behavior on packet not
to be filtered, similar to σ1; σ4, for packets to be filtered, is
interesting, it uses ⊥ (falsehood), a special predicate (a 0-ary
predicate always evaluating to false), in the head, implying a
contradiction. Finally, σ7 says that the packet header remains
the same as long as it is at an interface not configured with a
header rewrite or firewall.

1 /* rw1: rewriting policy at R1 */
2 σ1: [x1/x2, y1/y2] :-F(f,x1,y1,x1,1), F(f,x2,y2,1,2),

[¬(B(x1),C(y1))]. % no action
3 σ2: [y1/y2, A(x2)] :-F(f,x1,y1,x1,1), F(f,x2,y2,1,2),

[B(x1),C(y1)]. % rewrites source B→ A
4 /* fw: firewall at R2 */
5 σ3: [x1/x2, y1/y2] :-F(f,x1,y1,2,3), F(f,x2,y2,3,4),

[¬(B(x1),D(y1))]. % no action
6 σ4: [⊥] :-F(f,x1,y1,2,3), F(f,x2,y2,3,4), [B(x1),D(y1)]. %

filtering headers matching (B,D)
7 /* df (default policy): plain forwarding (no header

modification) */
8 σ7: [x1/x2, y1/y2] :-F(f,x1,y1,_,u), F(f,x2,y2,u,_),

[¬(u∈ {1, 3, 5, 8, 9, 7, 11})]. % when u does not match the
location of any policy (rw1,rw2,fw)

Listing 5: Examples network policies (Figure 1) as fauré-log-
dependencies

To chase with fauré-dependencies, we develop a new al-
gorithm 1: Given a rule r, and a fauré-dependency σ, the
intuition is, like the classic chase, to correct r — viewed
as an symbolic instance — according to the requirement
(substitution in egd, or the presence of new tuples in tgd) of σ.
The main complexity is in handling the conditions: To decide
the proper correction on the symbolic network state which are
c-tables, we leverage the fauré evaluation engine to perform
q(D) (line 3). When the result H′σ[ψσ] is empty (line 4), the



dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and σ are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H′σ in line
8).

Algorithm 1: The chase with fauré-dependency

input : fauré-log rule r : Hr : −Br[ϕr],
fauré-dependency σ : Hσ[x/y, ψσ] : −Bσ[ϕσ]

output: r →σ r′

1 instantiate Br[ϕr] into c-tables D ;
2 let q be Hσ[ψσ] : −Bσ[ϕσ] ;
3 let H′σ[ψ′

σ] = q(D) by fauré-log evaluation ;
4 if H′σ[ψσ] is empty;
5 then halt
6 else
7 let ϕ′

r = ϕr{x/y}, ϕ′
σ = ϕσ{x/y} ;

8 if ϕ′
r ∧ ϕ′

σ ∧ ψ′
σ is UNSAT then halt;

9 else let r′ be Hr{x/y} : −Br{x/y}, H′σ, [ϕ′
r, ϕ

′
σ, ψ

′
σ]

return r′;
10 end
11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser
Our main conjecture is that chasing with fauré-

dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies Σ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with Σ by repeatedly chasing
with σ ∈Σ is terminating, the ordering in which the σ′s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from Σ, p →··· · · · →σk

pk →··· · · · p′, the
end result p′ is unique, and we write p →Σp

′. This is
particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by Σ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some σ ∈Σ to sk−1

(sk is the result of chasing sk−1 with σ). The sequence is
terminal if it is finite and no dependency in Σ can be further
applied to it. In such cases, the chase with Σ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r′. The unique end result in the case of fauré-dependencies,
however, becomes a set of rules γ (= {r1, · · · , rn}): the chase
sequences still converge to the unique γ, but the individual
chase sequences can lead to different elements rk ∈ γ. In
particular, each rk ∈ γ represents the policy-based network
behavior for a specific equivalent class.

…

r1

rn

…

r r’

rn

r1

r,s1, …,sk, …,sm,r’

…

… 

r

…
…
…

…
(a) (b)

Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.

Acknowledgments. This work was supported by National
Science Foundation Award CNS-1909450, CNS-2145242.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” ser.
OSDI’10, 2010.

[2] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” ser. NSDI’15. USA: USENIX Association, 2015.

[3] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2837614.2837657

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
476–489. [Online]. Available: https://doi.org/10.1145/3230543.3230583

[5] A. Deutsch, A. Nash, and J. Remmel, “The chase revisited,” in
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, ser. PODS ’08. New
York, NY, USA: Association for Computing Machinery, 2008. [Online].
Available: https://doi.org/10.1145/1376916.1376938

[6] D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing implications of data
dependencies,” ACM Trans. Database Syst., vol. 4, no. 4, p. 455–469,
dec 1979. [Online]. Available: https://doi.org/10.1145/320107.320115

[7] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:
The Logical Level, Boston, MA, USA, 1995.

[8] F. Lan, B. Gui, and A. Wang, “Faure: a partial approach to network
analysis,” ser. ACM Workshop on Hot Topics in Networks (HotNets),
November, 2021.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, ser. nsdi’13. USA: USENIX
Association, 2013, p. 99–112.

[10] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router
execution,” in Proceedings of the ACM SIGCOMM 2022 Conference,
ser. SIGCOMM ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 336–349. [Online]. Available: https:
//doi.org/10.1145/3544216.3544264

[11] R. van der Meyden, “Logical approaches to incomplete information: A
survey,” in Logics for Databases and Information Systems (the book
grow out of the Dagstuhl Seminar 9529: Role of Logics in Information
Systems, 1995), J. Chomicki and G. Saake, Eds. Kluwer, 1998, pp.
307–356.

[12] T. Imieliński and W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984. [Online].
Available: https://doi.org/10.1145/1634.1886

[13] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of the
1987 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 34–48. [Online]. Available:
https://doi.org/10.1145/38713.38724

https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1145/320107.320115
https://doi.org/10.1145/3544216.3544264
https://doi.org/10.1145/3544216.3544264
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/38713.38724

	Introduction
	A Running Example
	Datalog and the Classic Chase
	Extending the Chase to Fauré-log
	Extending the chase to symbolic network
	Discussion: chasing fauré-dependencies is Church-Rosser

	References

