Abstract—The value of database in advancing networking — in the paradigm shift from protocols to software-defined networking — was once highlighted by database-inspired management of network states. Moving beyond factual states, this paper considers semantics management a new frontier in the databases-networking knowledge “transfer”, seeking to manage network policies via structural manipulation of the corresponding software (program). As a proof of concept, we make a case of semantics-based network transformation with the datalog structure and the chase, an elegant process for handling data dependencies (semantics). Our main result is an extension of the classic chase to fauré-log, a networking extension of datalog for the richer networking policies.

Index Terms—Software-defined networking, network datalog, semantics-based transformation, the Chase

I. INTRODUCTION

Database has played an active role in advancing networking research, notably, database inspired distributed network state management, a key enabler in the landscape changing movement of software-defined networks (SDN). Before custom built distributed key-value stores were available, production-scale SDN platforms achieved strong consistency among the replicas spanning across many datacenters by adopting the classical ACID notion and existing transactional databases [1]. As a second example, network verification, a topic that garnered wide interest and later borrows heavily from software engineering and formal methods, was first powered by datalog, which was lauded as a general modeling tool that enables declarative specification and fast simulation. With the clean and extensible network state management in datalog, it is not surprising that forerunners like Batfish [2] became a foundation (literally a component system) to many subsequent (often imperative and specialized) verifiers. If databases has helped shaping SDN, what is the next frontier?

One pain point in networking today is semantic management: As networks become more programmable (software-defined), the networks themselves are viewed as programs exhibiting richer semantics (policies), for which semantic management — maintaining the policy properties embedded in a network program — are pursued. Most tools for network semantics management take a primitive behavioral approach in which a network is modeled by a function whose inputs (packets) are exhaustively examined. For example, a network preserves its policy after an update if the tool cannot find a single input packet that exhibits the function — e.g., forwarding path for all packets — different. While great effort went into modeling the network function, the focus is to speed up evaluation on a huge input packet space. More advanced techniques capable of exploiting the network structure itself, however, is rare. The only structural approach we are aware is network transformers [3], [4] that use syntactic heuristics (e.g., based on network symmetry) to compress a network model into a smaller one while preserving certain properties.

In this paper, we consider semantic management a new frontier in network advancement by databases, pursuing the question: can we bring about structural network management in which the intended semantic management — analysis and transformation — intuitively maps to syntactic operation on the corresponding network representation? As a first step towards an affirmative answer, we study the concrete problem of semantics-based network transformation with the chase.

The chase [5], [6] is an elegant syntactic rewrite that takes a datalog query \(Q \) and a data dependency \(\sigma \) as input, transforms \(Q \) into \(Q' \) such that any “element” of \(Q \) that is incompatible with \(\sigma \) is intuitively corrected in \(Q' \) to satisfy \(\sigma \), written as \(\text{chase}(Q, \sigma) = Q' \). To transform a network expressed in a datalog program \(P \), based on its policies given by a set of data constraints (i.e. dependencies) \(\Sigma \), our idea is to repeatedly chase \(P \) with every dependency \(\sigma \in \Sigma \), until we converge to a unique new network \(P' \) that properly reflects all policies.

The key is to extend the classic chase theory to networking. We first identified a limitation to the classic chase: the classic chase uses the standard query evaluation on a datalog program’s instantiated database which is an incomplete database that requires more advanced evaluation. To address this mismatch, we generalize the chase to support richer semantics by developing a new algorithm \(\text{chase}(P, \sigma) \), where both \(P \), \(\sigma \) are datalog rules: by instantiating the \(P \) into an incomplete database instance \(I \), and processing \(\sigma \) as a data query over \(I \) by leveraging fauré-log evaluation, our earlier work on extending datalog to partial network state [8]. Our main finding is that, the new chase with a set of dependencies remains Church-Rosser [7] — the new chasing result remains unique (up to renaming of variable symbols) when terminating. While the classic chase transforms \(P \) with restricted dependencies into a single unique query, the new chase applicable to richer dependencies converts \(P \) into a unique set of programs.

II. A RUNNING EXAMPLE

We motivate semantics-based networking transformation by a running example in Figure 1: reachability between four groups of hosts \(\{A, B, C, D\} \) in the left and right ovals is controlled by the policies distributed at the 5 routers (center); \(R_2 \) is configured to block any packet header with source matching \(B \) (i.e. prefix belonging to group \(B \) and destination...
in D, R₁ (R₅, respectively) is set to rewrite header matching the pattern (B,C) ((A,C)) to (A,C) ((A,D)). That is, if the source of the header is in B (the destination of the header is in C), then modify the source (destination) to a host in A (D). In the presence of such rewrites, does R₂, a node en-route all pair-wise paths, still enforce the semantics — preventing group B from contacting D? The answer is no. A host in B can reach a destination in D by injecting instead a packet with a header that matches (B,C). Detecting such security hole with a existing behavioral analysis (e.g., Batfish [2]) requires insight into what packet to examine: the relevant packets include not, only those with a header in (B,D), but any packet created at group B.

Instead of improving behavioral analysis, we focus on the packet-manipulating network structure itself, that is a forwarding program P collectively driven by a set of policies Σ = {rw₁, rw₂, fw} in Figure 1. While behavioral analysis partitions the packet space of P into the so called equivalent classes (ECs) [9], [10], so as to quickly and thoroughly exercise P’s behavior (semantics) as governed by the policy set Σ, we ask, instead, how does Σ “modify” P structurally? And our goal is to syntactically transform program P, based on Σ, into a set of programs, such that each prescribes the network behavior (packet processing) on a particular EC in a more self-explanatory manner.

III. DATALOG AND THE CLASSIC CHASE

To realize the semantics-based network transformation in §II [1] we present a first attempt with datalog and the classic chase. Datalog has long been accepted as an intuitive specification language for networking: the forwarding behavior along R₁R₂R₃ naturally translates to r in Listing 1, where F(flow, source, destination, location, next – hop) is a predicate expressing that location (a switch interface in the network) forwards packet flow flow with header (source, destination) to the next – hop. To transform the network to incorporate the constraint that the destination of a packet remains unchanged — simply a key dependency k: flow → destination, we only need to chase r with k, “correcting” the body of r — by the substitution y₁/y₂, y₁/y₃, y₁/y₄, y₁/y₅, y₁/y₆, y₁/y — to satisfy k.

```
Listing 1: Example semantics-based network transformation
```

More generally, the classic chase is well-understood for data dependencies in the form of an equality generation dependency (egd) or tuple generation dependency (tgd). An example of egd is the key dependency k given by δ₁ in Listing 2 an example tgd is referential dependency (the presence of certain tuple in a relation implies the presence of another (probably in a different relation)). Both tgd, egd can be written as datalog rules if we allow (inequality. This allows us to apply the chase to a datalog program q by a dependency σ by running σ on the “instantiation” of q (a symbolic database instance D): tgd is just a regular datalog rule h : −b₁, . . . , bₙ, the “evaluation” of which proceeds on D by adding the new atom h to D (program q); for an egd e : −b₁, . . . , bₙ, (e is a substitution y/y’ corresponding to an equality atom y = y’ in δ₁), the evaluation is similar to egd except that instead of adding new goals to the rule, systematically applying the substitution.

```
Listing 2: Limitation of the classic chase
```

Unfortunately, the classic chase is too restricted for networking. The chase is hard to process even for a simple firewall policy for packets along R₁R₂R₃ in Figure 1 δ₃ in Listing 2 specifies a firewall that allows packets to pass R₃ only when its source is not 1.2.3.4, by involving the inequality with 1.2.3.4. δ₃ describes a firewall policy filtering any packets with a source from group B by using an auxiliary predicate B (not a database relation). We observe that the difficulty in chasing with policies given by such (general) datalog rules is that, these general constructs are not “evaluatable” on a symbolic database, because a symbolic database contains tuples with unknown values. For example, consider chasing r with δ₂, we have F(f(x₁, y₁, y₁,3, 2), F(f(x₃, y₃, 3, 4) in the symbolic database D, but we cannot determine whether x₃ ≠ 1.2.3.4 holds or not, because x₃ in D is a “symbolic” constant. Unlike a usual constant whose value we know, it is instantiated from a variable, with an uncertain value! For the same reason, when chasing with δ₃, we cannot decide the auxiliary predicate B(x₃).

IV. EXTENDING THE CHASE TO Fauré-LOG

Our goal is to develop a chase-like process to transform network behavior: given a network expressed in a datalog program p, we seek a network policy expression Σ, and a rewrite (chasing) process →Σ (or abbreviated as → when Σ is clear), such that chasing p with Σ produces p’ (written as p →Σ p’), where p’ is a new program that properly incorporates the intention of Σ; the intention of Σ should be self-evident.
Listing 3: $r \rightarrow \{r_1, r_2, r_3\}$: the “combined effect” of the policies is clearly “pronounced” in the transformed program $\{r_1, r_2, r_3\}$.

For example, the network in Figure 1 (the forwarding behavior) is given by a 4-rule program (along 4 paths, namely $R_1 R_2 B_3, R_1 B_2 R_3, R_2 B_3, R_2 B_3$), each of which computes reachability along a specific path. Specifically, The rule r in Listing 3 specifies the network behavior along $R_2 B_3$. We seek an expression for the three policies, such that chasing the program would embed those policies. Listing 3 illustrates the transformation result of r into three new rules, corresponding to the three equivalent classes determined by the policies. To achieve such network transformation, the rest of the section presents a design of Σ and a chase-like \rightarrow.

A. Extending the chase to symbolic network

Chasing a datalog program p with a dependency δ reduces to evaluating δ on the data instance D obtained from p, the challenge is that D is incomplete in the sense that the constant symbols instantiated from variables of p are not real constants, their values are unknown. To address this mismatch, we leverage incomplete databases research [8, 11-13]. Based on our prior work $fau\textordmasculine-log$, a datalog extension for partial network information, we develop a dependency expression called $fau\textordmasculine$-dependency for networking policies, and extend the chase to $fau\textordmasculine$-dependency.

Specifically, we represent the symbolic instance during the chasing, which we call the symbolic network, by conditional tables (c-tables). C-tables allow both constants and variable symbols, while the constant has a “face value”, the variable symbols denote unknown/uncertain values that are constrained by additional conditions (e.g., $\neg (x = 1.234.5)$ denotes an unknown value other than 1.234.5). Evaluation over such symbolic network is thus handled by $fau\textordmasculine-log$ evaluation [8]: in a $fau\textordmasculine-log$ program, the symbols include the usual constants and variables, and a new type of symbols called c-variables that are uncertain constants with additional conditions. The variables symbols now range over the domain of constants as well as the c-variables. The $fau\textordmasculine-log$ evaluation enhances standard datalog evaluation by also properly manipulating the c-variable conditions. $fau\textordmasculine$-dependency is just $fau\textordmasculine-log$ rules with two exceptions (1) all the variable symbols are c-variables to capture the “uncertain constants” in a symbolic network, (2) in the head (left of the rule) we allow the chase actions (substitution and tuple generation), as shown in Listing 3. Intuitively, a $fau\textordmasculine-log$ rule derives a symbolic head $H(u)$ if the symbolic database contains $B_1(u_1), \ldots, B_n(u_n)$ under the conditions $\{C(u_1), \ldots, C(u_n)\}$. That is, a $fau\textordmasculine$-dependency expresses tgj and egd conditionally.

Listing 4: Query symbolic network by $fau\textordmasculine-log$, represent policies as dependency

$Fau\textordmasculine$-dependency can easily express all the network policies in Figure 1 as shown in Listing 4. For example, the header rewrite at R_3 is given by σ_3, σ_4: σ_3 says that “irrelevant” packet headers (not matching the rewrite condition, captured by $\neg(B(x_1), C(y_1))$, where B, C are auxiliary predicates asserting group membership) in line 2) will pass R_3 (through ingress interface 1 to egress 2) without change, thus we have the substitution in the head; on the other hand, σ_4 asserts that for packets matching the condition, the source address will be rewritten to a new address x_2 in A. The header rewrite at R_3 can be formulated similarly. The firewall at R_2 is given by σ_3, σ_4: σ_3 describes the network behavior on packet not to be filtered, similar to σ_2: σ_4, for packets to be filtered, is interesting, it uses \perp (falsehood), a special predicate (a 0-ary predicate always evaluating to false), in the head, implying a contradiction. Finally, σ_7 says that the packet header remains the same as long as it is at an interface not configured with a header rewrite or firewall.

Listing 5: Examples network policies (Figure 1) as $fau\textordmasculine-log$-dependencies

To chase with $fau\textordmasculine$-dependencies, we develop a new algorithm [1]. Given a rule r, and a $fau\textordmasculine$-dependency σ, the intuition is, like the classic chase, to correct r — viewed as an symbolic instance — according to the requirement (substitution in egd, or the presence of new tuples in tgj) of σ. The main complexity is in handling the conditions: To decide the proper correction on the symbolic network state which are c-tables, we leverage the $fau\textordmasculine$ evaluation engine to perform $q(D)$ (line 3). When the result $H'_{\sigma}(v_2)$ is empty (line 4), the
dependency is not “applicable” (e.g., the “premise” of the dependency is not satisfiable), so the chase halts; Otherwise, we proceed to compute and evaluate the new conditions under a systematic substitution (line 6): if the new condition is UNSAT (line 7), it signals an “impossible” network state, meaning that γ and σ are incompatible; on the other hand, if the new condition is satisfiable, we apply the corrections by systematic substitutions (line 6) or new predicate insertions (H'_σ in line 8).

Algorithm 1: The chase with fauré-dependency

\begin{algorithm}[h]
\caption{The chase with fauré-dependency}
\begin{algorithmic}
\State \textbf{input} : fauré-log rule $r : B_r \rightarrow \phi$,
\textbf{output} : $\sigma \rightarrow r \rightarrow \sigma'$
\State $\phi_\sigma = \phi \{ x/y, \psi_\sigma : B_\sigma[\phi_\sigma] \}$
\State $\sigma \rightarrow \sigma'$
\Function{instance}{ϕ_σ into c-tables D ;}
\State $H_\sigma' \{ \psi_\sigma \} = Q(D)$ by fauré-log evaluation ;
\If{$H_\sigma' \{ \psi_\sigma \} \text{ is empty}$}
\State $\sigma \rightarrow \sigma'$
\Else
\State $\phi'_\sigma = \phi \{ x/y \}$, $\phi'_\sigma = \phi \{ x/y \}$
\If{$\phi'_\sigma \land \phi_\sigma \land \psi_\sigma$ is UNSAT}
\State $\sigma \rightarrow \sigma'$
\Else
\State let $\phi'_\sigma = H_\sigma' \{ x/y \}$
\State $\sigma \rightarrow \sigma'$
\EndIf
\State $\sigma \rightarrow \sigma'$
\EndIf
\EndFunction
\end{algorithmic}
\end{algorithm}

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-dependencies, despite being complete for a larger class of network dependencies via a more sophisticated procedure (Algorithm 1), remains “Church-Rosser”. Given a set of policy dependencies Σ (multiple network policies), if chasing a fauré-log rule p (we chase a multi-rule program by independently chasing each rule) with Σ by repeatedly chasing with $\sigma \in \Sigma$ is terminating, the ordering in which the σ’s are chosen is insignificant. That is, for any terminating sequence of dependencies from Σ, $p \rightarrow \ldots \rightarrow \sigma_n \rightarrow p_k \rightarrow \ldots \rightarrow p'$, the end result p' is unique, and we write $p \rightarrow_{\Sigma} p'$. This is particularly appealing for reasoning about the joint effects of a set of distributed policies (Figure 1) since the “interaction” between them is insignificant.

We also point out an interesting twist with the new chase: Let a chase sequence of r by Σ be s_1, \ldots, s_k, \ldots, such that for each k, s_k is the result of applying some $\sigma \in \Sigma$ to s_{k-1} (s_k is the result of chasing s_{k-1} with σ). The sequence is terminal if it is finite and no dependency in Σ can be further applied to it. In such cases, the chase with Σ is terminating and the last element is called its result. With these notions, Church-Rosser for the classic chase is shown in Figure 2(a): all (terminating) chasing sequences converge to a single rule r'. The unique end result in the case of fauré-dependencies, however, becomes a set of rules $\gamma (\{ r_1, \ldots, r_n \})$: the chase sequences still converge to the unique γ, but the individual chase sequences can lead to different elements $r_k \in \gamma$. In particular, each $r_k \in \gamma$ represents the policy-based network behavior for a specific equivalent class.