Structural Semantics Management: an Application of the Chase in Networking

Anduo Wang^{*}, Mubashir Anwar[#], Fangping Lan^{*}, Matthew Caesar[#] **Temple University* #*UIUC*

Abstract—The value of database in advancing networking — in the paradigm shift from protocols to software-defined networking — was once highlighted by database-inspired management of network states. Moving beyond factual states, this paper considers *semantics management* a new frontier in the databases-networking knowledge "transfer", seeking to manage network policies via structural manipulation of the corresponding software (program). As a proof of concept, we make a case of semantics-based network transformation with the datalog structure and the chase, an elegant process for handling data dependencies (semantics). Our main result is an extension of the classic chase to *fauré-log*, a networking extension of datalog for the richer networking policies.

Index Terms—Software-defined networking, network datalog, semantics-based transformation, the Chase

I. INTRODUCTION

Database has played an active role in advancing networking research, notably, database inspired distributed network state management, a key enabler in the landscape changing movement of software-defined networks (SDN). Before custom built distributed key-value stores were available, production-scale SDN platforms achieved strong consistency among the replicas spanning across many datacenters by adopting the classical ACID notion and existing transactional databases [1]. As a second example, network verification, a topic that garnered wide interest and later borrows heavily from software engineering and formal methods, was first powered by datalog, which was lauded as a general modeling tool that enables declarative specification and fast simulation. With the clean and extensible network state management in datalog, it is not surprising that forerunners like Batfish [2] became a foundation (literally a component system) to many subsequent (often imperative and specialized) verifiers. If databases has helped shaping SDN, what is the next frontier?

One pain point in networking today is semantic management: As networks become more programmable (softwaredefined), the networks themselves are viewed as programs exhibiting richer semantics (policies), for which semantic management — maintaining the policy properties embedded in a network program — are pursued. Most tools for network semantics management take a primitive *behavioral approach* in which a network is modeled by a function whose inputs (packets) are exhaustively examined. For example, a network preserves its policy after an update if the tool cannot find a single input packet that exhibits the function — e.g., forwarding path for all packets — different. While great effort went into modeling the network function, the focus is to speed up evaluation on a huge input packet space. More advanced techniques capable of exploiting the network *structure* itself, however, is rare. The only *structural approach* we are aware is network transformers [3], [4] that use syntactic heuristics (e.g., based on network symmetry) to compress a network model into a smaller one while preserving certain properties.

In this paper, we consider semantic management a new frontier in network advancement by databases, pursuing the question: can we bring about structural network management in which the intended semantic management — analysis and transformation — intuitively maps into syntactic operation on the corresponding network representation? As a first step towards an affirmative answer, we study the concrete problem of semantics-based network transformation with the chase.

The chase [5], [6] is an elegant syntactic rewrite that takes a datalog query Q and a data dependency σ as input, transforms Q into Q' such that any "element" of Q that is incompatible with σ is intuitively corrected in Q' to satisfy σ , written as chase(Q, σ) = Q'. To transform a network expressed in a datalog program P, based on its policies given by a set of data constraints (i.e. dependencies) Σ , our idea is to repeatedly chase P with every dependency $\sigma \in \Sigma$, until we converge to a unique new network P' that properly reflects all policies.

The key is to extend the classic chase theory to networking. We first identified a limitation to the classic chase: the classic chase uses the standard query evaluation on a datalog program's instantiated database which is an incomplete database that requires more advanced evaluation. To address this mismatch, we generalize the chase to support richer semantics by developing a new algorithm $chase(P, \sigma)$, where both P, σ are datalog rules: by instantiating the P into an incomplete database instance I, and processing σ as a data query over I by leveraging *fauré-log* evaluation, our earlier work on extending datalog to partial network state [8]. Our main finding is that, the new chase with a set of dependencies remains Church-Rosser [7] — the new chasing result remains unique (up to renaming of variable symbols) when terminating. While the classic chase transforms P with restricted dependencies into a single unique query, the new chase applicable to richer dependencies converts P into a unique set of programs.

II. A RUNNING EXAMPLE

We motivate semantics-based networking transformation by a running example in Figure 1: reachability between four groups of hosts (A, B, C, D in the left and right ovals) is controlled by the policies distributed at the 5 routers (center); R_2 is configured to block any packet header with source matching B (i.e. prefix belonging to group B) and destination

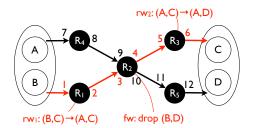


Fig. 1: Example reachability analysis in the presence of distributed policies: can host belonging in group B successfully send packets to hosts in D?

in D, R_1 (R_3 , respectively) is set to rewrite header matching the pattern (B, C) ((A, C)) to (A, C) ((A, D)). That is, if the source of the header is in B (the destination of the header is in C), then modify the source (destination) to a host in A (D). In the presence of such rewrites, does R_2 , a node en-route all pair-wise paths, still enforce the semantics — preventing group B from contacting D? The answer is no. A host in B can reach a destination in D by injecting instead a packet with a header that matches (B, C). Detecting such security hole with a existing behavioral analysis (e.g., Batfish [2]) requires insight¹¹ into what packet to examine: the relevant packets include not₂ only those with a header in (B, D), but any packet created at group B.

Instead of improving behavioral analysis, we focus on the packet-manipulating network structure itself, that is a forwarding program P collectively driven by a set of policies Σ (={ rw_1, rw_2, fw }) in Figure 1. While behavioral analysis partitions the packet space of P into the so called equivalent classes (ECs) [9], [10], so as to quickly and thoroughly exercise P's behavior (semantics) as governed by the policy set Σ , we ask, instead, how does Σ "modify" P structurally? And our goal is to syntactically transform program P, based on Σ , into a set of programs, such that each prescribes the network behavior (packet processing) on a particular EC in a more self-explanatory manner.

III. DATALOG AND THE CLASSIC CHASE

To realize the semantics-based network transformation in § II, we present a first attempt with datalog and the classic chase. Datalog has long been accepted as an intuitive specification language for networking: the forwarding behavior along $R_1R_2R_3$ naturally translates to r in Listing 1 where F(flow, source, destination, location, next - hop) is a predicate expressing that location (a switch interface in the network) forwards packet flow <code>flow</code> with header (source, <code>destination</code>) to the <code>next - hop</code>. To transform the network to incorporate the constraint that the destination of a packet remains unchanged — simply a key dependency k : flow $\rightarrow \texttt{destination}$, we only need to chase r with k, "correcting" the body of r — by the substitution $y_1/y_2, y_1/y_3, y_1/y_4, y_1/y_5, y_1/y_6, y_1/y$ — to satisfy k.

2	/* the result of chasing r with k */
3	$\mathbb{R}(x, y_1) := \mathbb{F}(f, x, y_1, x, 1), \mathbb{F}(f, x_2, y_1, 1, 2), \mathbb{F}(f, x_3, y_1, 2, 3),$
	F(f, x4, y1, 3, 4), F(f, x5, y1, 4, 5), F(f, x6, y1, 5, 6),
	F(f, x ₇ , y ₁ , 6, y ₁).

Listing 1: Example semantics-based network transformation

More generally, the classic chase is well-understood for data dependencies in the form of an equality generation dependency (egd) or tuple generation dependency (tgd). An example of egd is the key dependency k given by δ_1 in Listing 2, an example *tgd* is referential dependency (the presence of certain tuple in a relation implies the presence of another (probably in a different relation)). Both tgd,egd can be written as datalog rules if we allow (in)equality. This allows us to apply the chase to a datalog program q by a dependency σ by running σ on the "instantiation" of q (a symbolic database instance \mathcal{D}): tgd is just a regular datalog rule $h: -b_1, \dots, b_n$, the "evaluation" of which proceeds on $\mathcal D$ by adding the new atom h to $\mathcal D$ (program q); for an egd $e : -b_1, \dots, b_n$. (e is a substitution y/y' corresponding to an equality atom y = y' in δ_1), the evaluation is similar to egd except that instead of adding new goals to the rule, systematically applying the substitution.

δ_1 : y/y' :-F(f,x,y,u,w), F(f,x',y',u',w'). % datalog
representation of k
<pre>/* datalog rules with (in)equality (involving constants)</pre>
fails to evaluate on the symbolic database */
δ_2 : x/x', y/y' :-F(f,x,y,2,3), F(f,x',y',3,4), x \neq 1.2.3.4.
$\%$ a firewall at R $_2$ that filters source 1.2.3.4
δ ₃ : x/x', y/y' :-F(f,x,y,2,3), F(f,x',y',3,4), ¬B(x). % a
firewall at R_2 that filters source from group B

Listing 2: Limitation of the classic chase

Unfortunately, the classic chase is too restricted for networking. The chase is hard to process even for a simple firewall policy for packets along $R_1R_2R_3$ in Figure 1: δ_2 in Listing 2 specifies a firewall that allows packets to pass R₂ only when its source is not 1.2.3.4, by involving the inequality with 1.2.3.4. δ_3 describes a firewall policy filtering any packets with a source from group B by using an auxiliary predicate B (not a database relation). We observe that the difficulty in chasing with policies given by such (general) datalog rules is that, these general constructs are not "evaluatable" on a symbolic database, because a symbolic database contains tuples with unknown values. For example, consider chasing r with δ_2 , we have $F(f, x_3, y_3, 2, 3), F(f, x_3, y_3, 3, 4)$ in the symbolic database D, but we cannot determine whether $x_3 \neq 1.2.3.4$ holds or not, because x_3 in \mathcal{D} is a "symbolic" constant. Unlike a usual constant whose value we know, it is instantiated from a variable, with an uncertain value! For the same reason, when chasing with δ_3 , we cannot decide the auxiliary predicate $B(x_3).$

IV. EXTENDING THE CHASE TO Fauré-LOG

Our goal is to develop a chase-like process to transform network behavior: given a network expressed in a datalog program p, we seek a network policy expression Σ , and a rewrite (chasing) process \rightarrow_{Σ} (or abbreviated as \rightarrow when Σ is clear), such that chasing p with Σ produces p' (written as $p \rightarrow_{\Sigma} p'$), where p' is a new program that properly incorporates the intention of Σ ; the intention of Σ should be self-evident

r: $R(x, y) := F(f, x, y_1, x, 1)$, $F(f, x_2, y_2, 1, 2)$, $F(f, x_3, y_3, 2, 3)$, $F(f, x_4, y_4, 3, 4)$, $F(f, x_5, y_5, 4, 5)$, $F(f, x_6, y_6, 5, 6)$, $F(f, x_7, y, 6, y)$. % permitting header modifications along $R_1R_2R_3$

(not buried in a complex program) and the policy embedding rewrite \rightarrow is self-explanatory (the modification to p reveals how the structure in p interacts with Σ).

1	$r_1:$	$\mathbb{R}(x,y_1)\ :-\mathbb{F}(f,x,y_1,x,1),\mathbb{F}(f,x,y_1,1,2),$	
		F(f,x,y1,2,3),F(f,x,y1,3,4),F(f,x,y1,4,5),	
		$\mathbb{F}\left(\texttt{f},\texttt{x},\texttt{y}_{1},\texttt{5},\texttt{6}\right),\mathbb{F}\left(\texttt{f},\texttt{x},\texttt{y}_{1},\texttt{6},\texttt{y}_{1}\right),\left[\neg\mathbb{B}\left(\texttt{x}\right),\neg\left(\mathbb{A}\left(\texttt{x}\right),\mathbb{C}\left(\texttt{y}_{1}\right)\right)\right].$	
		% plain forwarding for prefixes not affected by any	
		policies (e.g.,B(x) means x belongs to B)	
2	r2:	$\mathbb{R}(x, y_6) := \mathbb{F}(f, x, y_1, x, 1), \mathbb{F}(f, x, y_1, 1, 2), \mathbb{F}(f, x, y_1, 2, 3),$	
		F(f,x,y ₁ ,3,4), F(f,x,y ₁ ,4,5), F(f,x,y ₆ ,5,6),	
		F(f,x,y6,6,y6), [¬B(x),A(x),¬D(y1),C(y1),D(y6)]. %	
		rewriting at R ₃ activated	
3	r ₃ :	$R(x, y_6) := F(f, x, y_1, x, 1), F(f, x_2, y_1, 1, 2),$	
		F(f, x ₂ , y ₁ , 2, 3), F(f, x ₂ , y ₁ , 3, 4), F(f, x ₂ , y ₁ , 4, 5),	
		F(f, x2, y6, 5, 6), F(f, x2, y6, 6, y6),	
		$[B(x), C(y_1), A(x_2), C(y_1), D(y_6)]$. % rewriting at R_1 and	
		R ₃ activated	

Listing 3: $r \to \{r_1, r_2, r_3\}$: the "combined effect" of the policies is clearly "pronounced" in the transformed program $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$

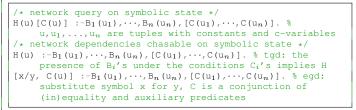
For example, the network in Figure 1 (the forwarding behavior) is given by a 4-rule program (along 4 paths, namely $R_1R_2R_3$, $R_1R_2R_5$, $R_4R_2R_3$, $R_4R_2R_5$), each of which computes reachability along a specific path. Specifically, The rule r in Listing 1 specifies the network behavior along $R_1R_2R_3$. We seek an expression for the three policies, such that chasing the program would embed those policies. Listing 3 illustrates the transformation result of r into three new rules, corresponding to the three equivalent classes determined by the policies. To achieve such network transformation, the rest of the section presents a design of Σ and a chase-like \rightarrow .

A. Extending the chase to symbolic network

Chasing a datalog program p with a dependency δ reduces to evaluating δ on the data instance \mathcal{D} obtained from p, the challenge is that \mathcal{D} is incomplete in the sense that the constant symbols instantiated from variables of p are not real constants, their values are unknown. To address this mismatch, we leverage incomplete databases research [8], [11]–[13]: based on our prior work *fauré-log*, a datalog extension for partial network information, we develop a dependency expression called *fauré*-dependency for networking policies, and extend³ the chase to *fauré*-dependency.

Specifically, we represent the symbolic instance during the⁵ chasing, which we call the symbolic network, by conditional tables (c-tables). C-tables allow both constants and variable symbols, while the constant has a "face value", the variable symbols denote unknown/uncertain values that are constrained⁸ by additional conditions (e.g., $\neg(x = 1.2.3.4)$ denotes an unknown value other than 1.2.3.4). Evaluation over such symbolic network is thus handled by *fauré-log* evaluation [8]: in a fauré-log program, the symbols include the usual constants and variables, and a new type of symbols called c-variables that are uncertain constants with additional conditions. The variables symbols now range over the domain of constants as well as the c-variables. The *fauré-log* evaluation enhances standard datalog evaluation by also properly manipulating the c-variable conditions. Fauré-dependency is just fauré-log rules with two exceptions (1) all the variable symbols are cvariables to capture the "uncertain constants" in a symbolic network, (2) in the head (left of the rule) we allow the

chase actions (substitution and tuple generation), as shown in Listing 4. Intuitively, a *fauré-log* rule derives a symbolic head H(u) constrained by C(u) if the symbolic database contains $B_1(u_1), \dots, B_n(u_n)$ under the condition $[C(u_1), \dots, C(u_n)]$. That is, a *fauré*-dependency expresses *tgd* and *egd* conditionally.



Listing 4: Query symbolic network by *fauré-log*, represent policies as *fauré-*dependency

Fauré-dependency can easily express all the network policies in Figure 1, as shown in Listing 5. For example, the header rewrite at R₁ is given by σ_1, σ_2 : σ_1 says that "irrelevant" packet headers (not matching the rewrite condition, captured by \neg (B(x₁), C(y₁)), where B, C are auxiliary predicates asserting group membership) in line 2) will pass R1 (through ingress interface 1 to egress 2) without change, thus we have the substitution in the head; on the other hand, σ_2 asserts that for packets matching the condition, the source address will be rewritten to a new address x_2 in A. The header rewrite at R_3 can be formulated similarly. The firewall at R_2 is given by σ_3, σ_4 : σ_3 describes the network behavior on packet not to be filtered, similar to σ_1 ; σ_4 , for packets to be filtered, is interesting, it uses \perp (falsehood), a special predicate (a 0-ary predicate always evaluating to false), in the head, implying a contradiction. Finally, σ_7 says that the packet header remains the same as long as it is at an interface not configured with a header rewrite or firewall.

Listing 5: Examples network policies (Figure 1) as *fauré-log-*dependencies

To chase with *fauré*-dependencies, we develop a new algorithm 1: Given a rule \mathbf{r} , and a *fauré*-dependency σ , the intuition is, like the classic chase, to correct \mathbf{r} — viewed as an symbolic instance — according to the requirement (substitution in egd, or the presence of new tuples in tgd) of σ . The main complexity is in handling the conditions: To decide the proper correction on the symbolic network state which are c-tables, we leverage the *fauré* evaluation engine to perform q(D) (line 3). When the result $H'_{\sigma}[\psi_{\sigma}]$ is empty (line 4), the

dependency is not "applicable" (e.g., the "premise" of the dependency is not satisfiable), so the chase halts; Otherwise, we proceed to compute and evaluate the new conditions under a systematic substitution (line 6): if the new condition is UNSAT (line 7), it signals an "impossible" network state, meaning that \mathbf{r} and σ are incompatible; on the other hand, if the new condition is satisfiable, we apply the corrections by systematic substitutions (line 6) or new predicate insertions (H'_{σ} in line 8).

Algorithm 1: The chase with *fauré*-dependency

input : fauré-log rule $\mathbf{r} : \mathbf{H}_{\mathbf{r}} : -\mathbf{B}_{\mathbf{r}}[\phi_{\mathbf{r}}],$ fauré-dependency $\sigma : H_{\sigma}[\mathbf{x}/\mathbf{y}, \psi_{\sigma}] : -B_{\sigma}[\phi_{\sigma}]$ output: $r \rightarrow_{\sigma} r'$ 1 instantiate $B_r[\phi_r]$ into c-tables D; let q be $H_{\sigma}[\psi_{\sigma}] : -B_{\sigma}[\phi_{\sigma}]$; 2 let $H'_{\sigma}[\psi'_{\sigma}] = q(D)$ by *fauré-log* evaluation ; 3 4 if $H'_{\sigma}[\psi_{\sigma}]$ is empty; then halt 5 6 else let $\phi'_{\mathbf{r}} = \phi_{\mathbf{r}} \{\mathbf{x}/\mathbf{y}\}, \phi'_{\sigma} = \phi_{\sigma} \{\mathbf{x}/\mathbf{y}\}$; if $\phi'_{\mathbf{r}} \wedge \phi'_{\sigma} \wedge \psi'_{\sigma}$ is UNSAT then halt; else let \mathbf{r}'_{\cdot} be $\mathbf{H}_{\mathbf{r}} \{\mathbf{x}/\mathbf{y}\}: -\mathbf{B}_{\mathbf{r}} \{\mathbf{x}/\mathbf{y}\}, \mathbf{H}'_{\sigma}, [\phi'_{\mathbf{r}}, \phi'_{\sigma}, \psi'_{\sigma}]$ 7 8 9 return r'; end 10 11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with *fauré*dependencies, despite being complete for a larger class of network dependencies via a more sophisticated procedure (Algorithm 1), remains "Church-Rosser". Given a set of policy dependencies Σ (multiple network policies), if chasing a *fauré-log* rule p (we chase a multi-rule program by independently chasing each rule) with Σ by repeatedly chasing with $\sigma \in \Sigma$ is terminating, the ordering in which the σ 's are chosen is insignificant. That is, for any terminating sequence of dependencies from Σ , $p \rightarrow \dots \rightarrow \sigma_k p_k \rightarrow \dots \cdots p'$, the end result p' is unique, and we write $p \rightarrow \Sigma p'$. This is particularly appealing for reasoning about the joint effects of a set of distributed policies (Figure 1) since the "interaction" between them is insignificant.

We also point out an interesting twist with the new chase: Let a chase sequence of \mathbf{r} by Σ be $\mathbf{s}_1, \dots, \mathbf{s}_k, \dots$, such that for each \mathbf{k} , \mathbf{s}_k is the result of applying some $\sigma \in \Sigma$ to \mathbf{s}_{k-1} (\mathbf{s}_k is the result of chasing \mathbf{s}_{k-1} with σ). The sequence is terminal if it is finite and no dependency in Σ can be further applied to it. In such cases, the chase with Σ is terminating and the last element is called its result. With these notions, Church-Rosser for the classic chase is shown in Figure 2 (a): all (terminating) chasing sequences converge to a single rule \mathbf{r}' . The unique end result in the case of *fauré*-dependencies, however, becomes a set of rules γ (= { $\mathbf{r}_1, \dots, \mathbf{r}_n$ }): the chase sequences still converge to the unique γ , but the individual chase sequences can lead to different elements $\mathbf{r}_k \in \gamma$. In particular, each $\mathbf{r}_k \in \gamma$ represents the policy-based network behavior for a specific equivalent class.

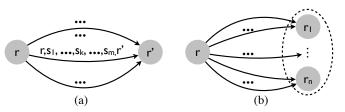


Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new chase with *fauré-log*.

Acknowledgments. This work was supported by National Science Foundation Award CNS-1909450, CNS-2145242.

REFERENCES

- T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, "Onix: a distributed control platform for large-scale production networks," ser. OSDI'10, 2010.
- [2] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and T. Millstein, "A general approach to network configuration analysis," ser. NSDI'15. USA: USENIX Association, 2015.
- [3] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese, "Scaling network verification using symmetry and surgery," in *Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, ser. POPL '16. New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available: https://doi.org/10.1145/2837614.2837657
- [4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, "Control plane compression," in *Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication*, ser. SIGCOMM '18. New York, NY, USA: Association for Computing Machinery, 2018, p. 476–489. [Online]. Available: https://doi.org/10.1145/3230543.3230583
- [5] A. Deutsch, A. Nash, and J. Remmel, "The chase revisited," in Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ser. PODS '08. New York, NY, USA: Association for Computing Machinery, 2008. [Online]. Available: https://doi.org/10.1145/1376916.1376938
- [6] D. Maier, A. O. Mendelzon, and Y. Sagiv, "Testing implications of data dependencies," ACM Trans. Database Syst., vol. 4, no. 4, p. 455–469, dec 1979. [Online]. Available: https://doi.org/10.1145/320107.320115
- [7] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases: The Logical Level, Boston, MA, USA, 1995.
- [8] F. Lan, B. Gui, and A. Wang, "Faure: a partial approach to network analysis," ser. ACM Workshop on Hot Topics in Networks (HotNets), November, 2021.
- [9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, "Real time network policy checking using header space analysis," in *Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation*, ser. nsdi'13. USA: USENIX Association, 2013, p. 99–112.
- [10] P. Zhang, D. Wang, and A. Gember-Jacobson, "Symbolic router execution," in *Proceedings of the ACM SIGCOMM 2022 Conference*, ser. SIGCOMM '22. New York, NY, USA: Association for Computing Machinery, 2022, p. 336–349. [Online]. Available: https: //doi.org/10.1145/3544216.3544264
- [11] R. van der Meyden, "Logical approaches to incomplete information: A survey," in Logics for Databases and Information Systems (the book grow out of the Dagstuhl Seminar 9529: Role of Logics in Information Systems, 1995), J. Chomicki and G. Saake, Eds. Kluwer, 1998, pp. 307–356.
- [12] T. Imieliński and W. Lipski, "Incomplete information in relational databases," J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984. [Online]. Available: https://doi.org/10.1145/1634.1886
- [13] S. Abiteboul, P. Kanellakis, and G. Grahne, "On the representation and querying of sets of possible worlds," in *Proceedings of the* 1987 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD '87. New York, NY, USA: Association for Computing Machinery, 1987, p. 34–48. [Online]. Available: https://doi.org/10.1145/38713.38724