
Structural Semantics Management:
an Application of the Chase in

Networking

Anduo Wang✽, Mubashir Anwar✔, Fangping Lan✽, Matthew Caesar✔
✽Temple University ✔UIUC

MASCOTS 2023 (October 16-18)

for everyday life
-Web, VoIP, social networking, content providers …

networking: a wonderful success

networking: a wonderful success
(Internet) a remarkable story
-from research experiment to global infrastructure

3source: https://en.wikipedia.org/wiki/Internet

ARPANET, 1977

today

https://en.wikipedia.org/wiki/Internet

innovations take rapid transitions

Ahmed Khurshid., et al. “VeriFlow: Verifying
Network-Wide Invariants in Real Time”
https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/khurshid
NSDI 2013

http://packetpushers.net/veriflow-nabs-8-2-million-
clever-ideas-network-outage-prevention/

3 years, $8.2 million

networking: a wonderful success

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
http://packetpushers.net/veriflow-nabs-8-2-million-clever-ideas-network-outage-prevention/
http://packetpushers.net/veriflow-nabs-8-2-million-clever-ideas-network-outage-prevention/

inside the ‘Net’: a different story

5

network systems
-increasingly complex

network management
- a black art

software-defined networking (SDN)

formal analysis
[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis.
[SIGCOMM’16] Fast Control Plane Analysis

Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool

for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

… …

network management, an anatomy

structure

pr
oc

es
s

cause
testify

semantics

objects
(packets)

ad-hoc protocols, more
systematic software
defined networking

ping, traceroute, formal
analysis with stronger
guarantee

network management, an anatomy

structure

pr
oc

es
s

cause
testify

semantics

objects
(packets)

ad-hoc protocols, more
systematic software
defined networking

ping, traceroute, formal
analysis with stronger
guarantee

(why/how)

network management, this work

pr
oc

es
s

cause
testify

objects
(packets)

ad-hoc protocols, more
systematic software
defined networking

ping, traceroute, formal
analysis with stronger
guarantee

(why/how)structure semantics

our approach: relational database and its
neighboring disciplines — deductive
reasoning, knowledge representation and
reasoning, logic programming, artificial
intelligence …

relations,
datalog)(data

dependencies)(

the chase)(

network management, this work
pr

oc
es

s

cause

testify

objects
(packets)

(why/how)structure semantics
relations,
datalog)(data

dependencies)(

？
which fragment

causes what
anomaly?

what
modification

corrects which
anomaly?

semantics-based
network

transformation

explain how and
why an intention is
implemented by a

soup of
structures?

formalize
network

minimality — a
smallest structure

— for an
intention

a procedure
finding the
minimal?

is the firewall effectively
installed?
i.e., can hosts belong to B still
send traffic to those in C?

an example

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rewrite:
(B,C)→(A,C)

firewall:
drop (B,D)

rewrite:
(A,C)→(A,D)

7

9

11
12

8

10 ？

is the firewall effectively
installed?
i.e., can hosts belong to B still
send traffic to those in C?

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rewrite:
(B,C)→(A,C)

firewall:
drop (B,D)

rewrite:
(A,C)→(A,D)

7

9

11
12

8

10 ？
an example

is the firewall effectively
installed?
i.e., can hosts belong to B still
send traffic to those in C?

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rewrite:
(B,C)→(A,C)

firewall:
drop (B,D)

rewrite:
(A,C)→(A,D)

7

9

11
12

8

10 ？
existing approach
-inject input traffic into B, and observe output at C

an example

is the firewall effectively
installed?
i.e., can hosts belong to B still
send traffic to those in C?

semantics-based network transformation

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rewrite:
(B,C)→(A,C)

firewall:
drop (B,D)

rewrite:
(A,C)→(A,D)

7

9

11
12

8

10 ？
plain forwarding program

P

a set of policies,
characterizing

legitimate packets
Σ

P’
structural rewrite

P’ reflects Σ,
renders the
security hole

a formulation with the chase

plain forwarding program
P

a set of policies,
characterizing

legitimate packets
Σ

P’
structural rewrite

a datalog query
P

data dependencies
Σ

P’
the chase

P’=P on data
satisfying Σ

P’ reflects Σ,
renders the
security hole

a formulation with the chase
a datalog query

P

data dependencies
Σ

the chase
-given a data dependency σ (∈Σ)
-eliminates “useless” evaluation in P by an intuitive structural

rewrite (adding/collapsing/updating elements in the query)

P’

P’=P on data
satisfying Σ

y

？

the chase
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(Flow, Source, Destination, Location, Next-hop)

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y2 1 2

f x3 y3 2 3

f x4 y4 3 4

f x5 y5 4 5

f x6 y6 5 6

f x7 y 6 7

head x y

tableau query

y

？

the chase
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(Flow, Source, Destination, Location, Next-hop)

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y1 1 2

f x3 y3 2 3

f x4 y4 3 4

f x5 y5 4 5

f x6 y6 5 6

f x7 y 6 7

head x y

tableau query

y

？

the chase
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(Flow, Source, Destination, Location, Next-hop)

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y1 1 2

f x3 y1 2 3

f x4 y1 3 4

f x5 y1 4 5

f x6 y1 5 6

f x7 y1 6 7

head x y1

tableau querytableau query

the chase
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(Flow, Source, Destination, Location, Next-hop)

/* P’: the result of chasing r with k */
R(x,y1) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),
 F(f,x3,y1,2,3), F(f,x4,y1,3,4),
 F(f,x5,y1,4,5), F(f,x6,y1,5,6),
 F(f,x7,y1,6,y1).

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y1 1 2

f x3 y1 2 3

f x4 y1 3 4

f x5 y1 4 5

f x6 y1 5 6

f x7 y1 6 7

head x y1

tableau query

the chase
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(flow, source, destination, location, next-hop)

/* P’: the result of chasing r with k */
R(x,y1) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),
 F(f,x3,y1,2,3), F(f,x4,y1,3,4),
 F(f,x5,y1,4,5), F(f,x6,y1,5,6),
 F(f,x7,y1,6,y1).

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

the chase, limitation
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(flow, source, destination, location, next-hop)

？

k’: k restricted to R2
and source other than
1.2.3.4
y=y’:- F(f,x,y,2,3),
FFFFFF(f,x’,y’,3,4),
FFFFFx≠1.2.3.4.

/* P’: the result of chasing r with k */
R(x,y1) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),
 F(f,x3,y1,2,3), F(f,x4,y1,3,4),
 F(f,x5,y1,4,5), F(f,x6,y1,5,6),
 F(f,x7,y1,6,y1).

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

the chase, limitation
/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(flow, source, destination, location, next-hop)

？

k’: k restricted to R2
and source other than
1.2.3.4
y=y’:- F(f,x,y,2,3),
FFFFFF(f,x’,y’,3,4),
FFFFFx≠1.2.3.4.

/* P’: the result of chasing r with k */
R(x,y1) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),
 F(f,x3,y1,2,3), F(f,x4,y1,3,4),
 F(f,x5,y1,4,5), F(f,x6,y1,5,6),
 F(f,x7,y1,6,y1).

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

P F S D L N

body

…
f x3 y3 2 3

f x4 y4 3 4

…
head x y

x3≠1.2.3.4?

the chase, strength
dependency σ (∈Σ) as general
implication
-ɸ(X,Y)→ ∃Z.ψ(Y,Z)
- X,Y,Z are vectors of variables, ɸ and ψ are

conjunction of predicates (including equations)
- subsume all common (integrity) constraints in

database applications

chasing with a set Σ is Church-
Rosser
-terminates with a unique result
- the order of applying σ (∈Σ) is insignificant

dependency σ (∈Σ) as general
implication
-ɸ(X,Y)→ ∃Z.ψ(Y,Z)
- X,Y,Z are vectors of variables, ɸ and ψ are

conjunction of predicates (including equations)
- subsume all common (integrity) constraints in

database applications

chasing with a set Σ is Church-
Rosser
-terminates with a unique result
- the order of applying σ (∈Σ) is insignificant

too limited for
network policies

the chase, strength & limitation

our
contribution

extend the chase to networking
dependency σ (∈Σ) as general
implication
-ɸ(X,Y)→ ∃Z.ψ(Y,Z)
- X,Y,Z are vectors of variables, ɸ and ψ are

conjunction of predicates (including equations)
- subsume all common (integrity) constraints in

database applications

chasing with a set Σ is Church-
Rosser
-terminates with a unique result
- the order of applying σ (∈Σ) is insignificant

richer
dependencies
(of network
policies)

retain the
Church-Rosser
property

/* P: reachability (forwarding) along
R1R2R3 */
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),
 F(f,x3,y3,2,3), F(f,x4,y4,3,4),
 F(f,x5,y5,4,5), F(f,x6,y6,5,6),
 F(f,x7,y,6,y).
%% permitting header modifications
%% F(flow, source, destination, location, next-hop)

？

k’: k restricted to R2
and source other than
1.2.3.4
y=y’:- F(f,x,y,2,3),
FFFFFF(f,x’,y’,3,4),
FFFFFx≠1.2.3.4.

/* P’: the result of chasing r with k */
R(x,y1) :-F(f,x,y1,x,1),F(f,x2,y1,1,2),
 F(f,x3,y1,2,3), F(f,x4,y1,3,4),
 F(f,x5,y1,4,5), F(f,x6,y1,5,6),
 F(f,x7,y1,6,y1).

k: a key dependency
y=y’:- F(f,x,y,u,w),
 F(f,x’,y’,u’,w’).

P F S D L N

body

…
f x3 y3 2 3

f x4 y4 3 4

…
head x y

x3≠1.2.3.4?

extend the chase, insight

view P (body) as an
incomplete database
instance,
evaluate k’ on D

a datalog variant for incomplete information
-a variant of datalog, querying conditional tables (al
- lowing variables, whose values constrained by conditions)

fauré-log

/* network query on symbolic state */
H(u)[C(u)] :- B1(u1),···, Bn(un), [C1(u1),···,Cn(un)].
%% u,u1,...,un are tuples with constants and variables(conditioned by
constraints C,C1,…,Cn)

a datalog variant for incomplete information
-a variant of datalog, querying conditional tables (al
- lowing variables, whose values constrained by conditions)

fauré-log dependencies, for network policies

fauré-log, richer dependencies

/* network query on symbolic state */
H(u)[C(u)] :- B1(u1),···, Bn(un), [C1(u1),···,Cn(un)].
%% u,u1,...,un are tuples with constants and variables(conditioned by
constraints C,C1,…,Cn)

/* network dependencies chasable on symbolic states */
H(u) :- B1(u1),···,Bn (un), [C1(u1),···,Cn(un)]. % tgd: the presence
of Bi’s under the conditions Ci’s implies H

[x/y, C(u)] :- B1(u1),···, Bn(un),[C1(u1),···,Cn(un)]. % egd:
substitute symbol x for y, Ci’s are conjunction of (in)equality and
auxiliary predicates

generalize the substitution of the chase to fauré-log evaluation

generalize the chase step

dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[�] : �B�[��] ;
3 let H0�[0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[�] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^ 0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�,

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.

…

r1

rn

…

r r’

rn

r1

r,s1, …,sk, …,sm,r’

…

…

r

…

…
…

…
(a) (b)

Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.

Acknowledgments. This work was supported by National
Science Foundation Award CNS-1909450, CNS-2145242.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” ser.
OSDI’10, 2010.

[2] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” ser. NSDI’15. USA: USENIX Association, 2015.

[3] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2837614.2837657

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
476–489. [Online]. Available: https://doi.org/10.1145/3230543.3230583

[5] A. Deutsch, A. Nash, and J. Remmel, “The chase revisited,” in
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, ser. PODS ’08. New
York, NY, USA: Association for Computing Machinery, 2008. [Online].
Available: https://doi.org/10.1145/1376916.1376938

[6] D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing implications of data
dependencies,” ACM Trans. Database Syst., vol. 4, no. 4, p. 455–469,
dec 1979. [Online]. Available: https://doi.org/10.1145/320107.320115

[7] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:

The Logical Level, Boston, MA, USA, 1995.
[8] F. Lan, B. Gui, and A. Wang, “Faure: a partial approach to network

analysis,” ser. ACM Workshop on Hot Topics in Networks (HotNets),
November, 2021.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, ser. nsdi’13. USA: USENIX
Association, 2013, p. 99–112.

[10] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router
execution,” in Proceedings of the ACM SIGCOMM 2022 Conference,
ser. SIGCOMM ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 336–349. [Online]. Available: https:
//doi.org/10.1145/3544216.3544264

[11] R. van der Meyden, “Logical approaches to incomplete information: A
survey,” in Logics for Databases and Information Systems (the book

grow out of the Dagstuhl Seminar 9529: Role of Logics in Information

Systems, 1995), J. Chomicki and G. Saake, Eds. Kluwer, 1998, pp.
307–356.

[12] T. Imieliński and W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984. [Online].
Available: https://doi.org/10.1145/1634.1886

[13] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of the

1987 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 34–48. [Online]. Available:
https://doi.org/10.1145/38713.38724

equality generation
dependency (egd)

collapsing atoms in
the rule

generalize the substitution of the chase to fauré-log evaluation

dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[�] : �B�[��] ;
3 let H0�[0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[�] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^ 0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�,

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.

…

r1

rn

…

r r’

rn

r1

r,s1, …,sk, …,sm,r’

…

…

r

…

…
…

…
(a) (b)

Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.

Acknowledgments. This work was supported by National
Science Foundation Award CNS-1909450, CNS-2145242.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” ser.
OSDI’10, 2010.

[2] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” ser. NSDI’15. USA: USENIX Association, 2015.

[3] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2837614.2837657

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
476–489. [Online]. Available: https://doi.org/10.1145/3230543.3230583

[5] A. Deutsch, A. Nash, and J. Remmel, “The chase revisited,” in
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, ser. PODS ’08. New
York, NY, USA: Association for Computing Machinery, 2008. [Online].
Available: https://doi.org/10.1145/1376916.1376938

[6] D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing implications of data
dependencies,” ACM Trans. Database Syst., vol. 4, no. 4, p. 455–469,
dec 1979. [Online]. Available: https://doi.org/10.1145/320107.320115

[7] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:

The Logical Level, Boston, MA, USA, 1995.
[8] F. Lan, B. Gui, and A. Wang, “Faure: a partial approach to network

analysis,” ser. ACM Workshop on Hot Topics in Networks (HotNets),
November, 2021.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, ser. nsdi’13. USA: USENIX
Association, 2013, p. 99–112.

[10] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router
execution,” in Proceedings of the ACM SIGCOMM 2022 Conference,
ser. SIGCOMM ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 336–349. [Online]. Available: https:
//doi.org/10.1145/3544216.3544264

[11] R. van der Meyden, “Logical approaches to incomplete information: A
survey,” in Logics for Databases and Information Systems (the book

grow out of the Dagstuhl Seminar 9529: Role of Logics in Information

Systems, 1995), J. Chomicki and G. Saake, Eds. Kluwer, 1998, pp.
307–356.

[12] T. Imieliński and W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984. [Online].
Available: https://doi.org/10.1145/1634.1886

[13] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of the

1987 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 34–48. [Online]. Available:
https://doi.org/10.1145/38713.38724

tuple generation
dependency (tgd)

add new atoms in the
rule

generate the new
(implied) atoms by
fauré-log

generalize the chase step

dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[�] : �B�[��] ;
3 let H0�[0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[�] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^ 0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�,

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.

…

r1

rn

…

r r’

rn

r1

r,s1, …,sk, …,sm,r’

…

…

r

…

…
…

…
(a) (b)

Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.

Acknowledgments. This work was supported by National
Science Foundation Award CNS-1909450, CNS-2145242.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” ser.
OSDI’10, 2010.

[2] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” ser. NSDI’15. USA: USENIX Association, 2015.

[3] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2837614.2837657

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
476–489. [Online]. Available: https://doi.org/10.1145/3230543.3230583

[5] A. Deutsch, A. Nash, and J. Remmel, “The chase revisited,” in
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, ser. PODS ’08. New
York, NY, USA: Association for Computing Machinery, 2008. [Online].
Available: https://doi.org/10.1145/1376916.1376938

[6] D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing implications of data
dependencies,” ACM Trans. Database Syst., vol. 4, no. 4, p. 455–469,
dec 1979. [Online]. Available: https://doi.org/10.1145/320107.320115

[7] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:

The Logical Level, Boston, MA, USA, 1995.
[8] F. Lan, B. Gui, and A. Wang, “Faure: a partial approach to network

analysis,” ser. ACM Workshop on Hot Topics in Networks (HotNets),
November, 2021.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, ser. nsdi’13. USA: USENIX
Association, 2013, p. 99–112.

[10] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router
execution,” in Proceedings of the ACM SIGCOMM 2022 Conference,
ser. SIGCOMM ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 336–349. [Online]. Available: https:
//doi.org/10.1145/3544216.3544264

[11] R. van der Meyden, “Logical approaches to incomplete information: A
survey,” in Logics for Databases and Information Systems (the book

grow out of the Dagstuhl Seminar 9529: Role of Logics in Information

Systems, 1995), J. Chomicki and G. Saake, Eds. Kluwer, 1998, pp.
307–356.

[12] T. Imieliński and W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984. [Online].
Available: https://doi.org/10.1145/1634.1886

[13] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of the

1987 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 34–48. [Online]. Available:
https://doi.org/10.1145/38713.38724

generalize the substitution of the chase to fauré-log evaluation

systematic
management of
semantic constraints
in the conditional
tables (c-tables)

generalize the chase step

dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[�] : �B�[��] ;
3 let H0�[0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[�] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^ 0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�,

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.

…

r1

rn

…

r r’

rn

r1

r,s1, …,sk, …,sm,r’

…

…

r

…

…
…

…
(a) (b)

Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.

Acknowledgments. This work was supported by National
Science Foundation Award CNS-1909450, CNS-2145242.

REFERENCES

[1] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,” ser.
OSDI’10, 2010.

[2] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” ser. NSDI’15. USA: USENIX Association, 2015.

[3] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and
G. Varghese, “Scaling network verification using symmetry and
surgery,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2837614.2837657

[4] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
476–489. [Online]. Available: https://doi.org/10.1145/3230543.3230583

[5] A. Deutsch, A. Nash, and J. Remmel, “The chase revisited,” in
Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, ser. PODS ’08. New
York, NY, USA: Association for Computing Machinery, 2008. [Online].
Available: https://doi.org/10.1145/1376916.1376938

[6] D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing implications of data
dependencies,” ACM Trans. Database Syst., vol. 4, no. 4, p. 455–469,
dec 1979. [Online]. Available: https://doi.org/10.1145/320107.320115

[7] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases:

The Logical Level, Boston, MA, USA, 1995.
[8] F. Lan, B. Gui, and A. Wang, “Faure: a partial approach to network

analysis,” ser. ACM Workshop on Hot Topics in Networks (HotNets),
November, 2021.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, ser. nsdi’13. USA: USENIX
Association, 2013, p. 99–112.

[10] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router
execution,” in Proceedings of the ACM SIGCOMM 2022 Conference,
ser. SIGCOMM ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 336–349. [Online]. Available: https:
//doi.org/10.1145/3544216.3544264

[11] R. van der Meyden, “Logical approaches to incomplete information: A
survey,” in Logics for Databases and Information Systems (the book

grow out of the Dagstuhl Seminar 9529: Role of Logics in Information

Systems, 1995), J. Chomicki and G. Saake, Eds. Kluwer, 1998, pp.
307–356.

[12] T. Imieliński and W. Lipski, “Incomplete information in relational
databases,” J. ACM, vol. 31, no. 4, p. 761–791, Sep. 1984. [Online].
Available: https://doi.org/10.1145/1634.1886

[13] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of the

1987 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 34–48. [Online]. Available:
https://doi.org/10.1145/38713.38724

incompatible σ leads to invalid output rule (halt)

(application of)
incompatible policies
renders an impossible
network behavior
that cannot be
described any fauré-log
rule

generalize the chase step

the new chase
given a set of fauré-log dependencies
Σ={σ1,…,σn},n⩾1, chase a program P with Σ by
-repeatedly chase each rule r ∈ P with a randomly selected

fauré-log dependency σ ∈ Σ

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

one chase step

the classic
chase (of Σ)

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

…

…

unique rule

the classic
chase (of Σ)

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

…

…

r ri

fauré-log dependency
σi

a compatible sequence of
policies

the classic
chase (of Σ)

the new
chase (of Σ)

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

…

…

r ri

halt

an incompatible sequence
of policies

σi

the classic
chase (of Σ)

the new
chase (of Σ)

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

…

…

r ri

halt

…

…

another compatible
sequence of policies

the classic
chase (of Σ)

the new
chase (of Σ)

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

…

…

r ri

halt

…

…

…

halt

more compatible/
incompatible sequence of
policies

the classic
chase (of Σ)

the new
chase (of Σ)

Church-Rosser: regardless of the order of applying σ (∈Σ), the
chase of Σ yields a unique result

preserving Church-Rosser

r r’
σi

…

…

the classic
chase (of Σ)

r ri

halt

…

…

…

halt

the new
chase (of Σ)

…

…

unique rule
set

unique result

moving forward
formalization
-formalize fauré-log based chase

recursion
-extend the new chase to recursive fauré-log?

termination analysis
-non-deterministic / deterministic variants
-domain-specific notion of compatibility (of network policies)

empirical study
-benchmarking performance of the new chase on network

policies

conclusion

pr
oc

es
s

cause
testify

objects
(packets)

ad-hoc protocols, more
systematic software
defined networking

ping, traceroute, formal
analysis with stronger
guarantee

(why/how)structure semantics

semantics-based network transformation
with the new chase algorithm
• accommodates richer dependencies

of network policies
• preserves Church-Rosser

fauré-log)(fauré-
dependencies)(

