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for everyday life
-Web, VoIP, social networking, content providers …

networking: a wonderful success



networking: a wonderful success
(Internet) a remarkable story
-from research experiment to global infrastructure

3source: https://en.wikipedia.org/wiki/Internet

ARPANET, 1977

today

https://en.wikipedia.org/wiki/Internet


innovations take rapid transitions

Ahmed Khurshid., et al. “VeriFlow: Verifying 
Network-Wide Invariants in Real Time”
https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/khurshid
NSDI 2013

http://packetpushers.net/veriflow-nabs-8-2-million-
clever-ideas-network-outage-prevention/

3 years, $8.2 million

networking: a wonderful success

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
http://packetpushers.net/veriflow-nabs-8-2-million-clever-ideas-network-outage-prevention/
http://packetpushers.net/veriflow-nabs-8-2-million-clever-ideas-network-outage-prevention/


inside the ‘Net’: a different story

5

network systems
-increasingly complex

network management
- a black art



software-defined networking (SDN)



formal analysis
[NSDI 20] Tiramisu: Fast Multilayer Network 
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(why/how)structure semantics

our approach: relational database and its 
neighboring disciplines — deductive 
reasoning, knowledge representation and 
reasoning, logic programming, artificial 
intelligence …
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which fragment 

causes what 
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semantics-based 
network 

transformation

explain how and 
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implemented by a 
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finding the 
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is the firewall effectively 
installed?
i.e., can hosts belong to B still 
send traffic to those in C?

an example

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rewrite: 
(B,C)→(A,C)

firewall: 
drop (B,D)

rewrite: 
(A,C)→(A,D)

7

9

11
12

8

10 ？



is the firewall effectively 
installed?
i.e., can hosts belong to B still 
send traffic to those in C?

R1

R2

R3R4

R5

A

B

C

D1
2

3

4
5 6

rewrite: 
(B,C)→(A,C)

firewall: 
drop (B,D)

rewrite: 
(A,C)→(A,D)

7

9

11
12

8

10 ？
an example



is the firewall effectively 
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firewall: 
drop (B,D)
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(A,C)→(A,D)
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10 ？
existing approach
-inject input traffic into B, and observe output at C

an example



is the firewall effectively 
installed?
i.e., can hosts belong to B still 
send traffic to those in C?

semantics-based network transformation
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P’ reflects Σ,
renders the 
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a formulation with the chase

plain forwarding program
P

a set of policies, 
characterizing 

legitimate packets
Σ

P’
structural rewrite

a datalog query
P

data dependencies
Σ

P’
the chase

P’=P on data 
satisfying Σ

P’ reflects Σ,
renders the 
security hole



a formulation with the chase
a datalog query

P

data dependencies
Σ

the chase
-given a data dependency σ (∈Σ)
-eliminates “useless” evaluation in P by an intuitive structural 

rewrite (adding/collapsing/updating elements in the query)

P’

P’=P on data 
satisfying Σ
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the chase
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(Flow, Source, Destination, Location, Next-hop)

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y2 1 2

f x3 y3 2 3

f x4 y4 3 4

f x5 y5 4 5

f x6 y6 5 6

f x7 y 6 7

head x y

tableau query
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the chase
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(Flow, Source, Destination, Location, Next-hop)

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y1 1 2

f x3 y3 2 3

f x4 y4 3 4

f x5 y5 4 5

f x6 y6 5 6

f x7 y 6 7

head x y

tableau query
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the chase
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(Flow, Source, Destination, Location, Next-hop)

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y1 1 2

f x3 y1 2 3

f x4 y1 3 4

f x5 y1 4 5

f x6 y1 5 6

f x7 y1 6 7

head x y1

tableau querytableau query



the chase
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(Flow, Source, Destination, Location, Next-hop)

/* P’: the result of chasing r with k */ 
R(x,y1 ) :-F(f,x,y1,x,1),F(f,x2,y1,1,2), 
    F(f,x3,y1,2,3), F(f,x4,y1,3,4), 
    F(f,x5,y1,4,5), F(f,x6,y1,5,6), 
    F(f,x7,y1,6,y1 ).

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).

P F S D L N

body

f x y1 x 1

f x2 y1 1 2

f x3 y1 2 3

f x4 y1 3 4

f x5 y1 4 5

f x6 y1 5 6

f x7 y1 6 7

head x y1

tableau query



the chase
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(flow, source, destination, location, next-hop)

/* P’: the result of chasing r with k */ 
R(x,y1 ) :-F(f,x,y1,x,1),F(f,x2,y1,1,2), 
    F(f,x3,y1,2,3), F(f,x4,y1,3,4), 
    F(f,x5,y1,4,5), F(f,x6,y1,5,6), 
    F(f,x7,y1,6,y1 ).

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).



the chase, limitation
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(flow, source, destination, location, next-hop)

？

k’: k restricted to R2 
and source other than 
1.2.3.4 
y=y’:- F(f,x,y,2,3),   
FFFFFF(f,x’,y’,3,4), 
FFFFFx≠1.2.3.4.

/* P’: the result of chasing r with k */ 
R(x,y1 ) :-F(f,x,y1,x,1),F(f,x2,y1,1,2), 
    F(f,x3,y1,2,3), F(f,x4,y1,3,4), 
    F(f,x5,y1,4,5), F(f,x6,y1,5,6), 
    F(f,x7,y1,6,y1 ).

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).



the chase, limitation
/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(flow, source, destination, location, next-hop)

？

k’: k restricted to R2 
and source other than 
1.2.3.4 
y=y’:- F(f,x,y,2,3),   
FFFFFF(f,x’,y’,3,4), 
FFFFFx≠1.2.3.4.

/* P’: the result of chasing r with k */ 
R(x,y1 ) :-F(f,x,y1,x,1),F(f,x2,y1,1,2), 
    F(f,x3,y1,2,3), F(f,x4,y1,3,4), 
    F(f,x5,y1,4,5), F(f,x6,y1,5,6), 
    F(f,x7,y1,6,y1 ).

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).

P F S D L N

body

…
f x3 y3 2 3

f x4 y4 3 4

…
head x y

x3≠1.2.3.4?



the chase, strength
dependency σ (∈Σ) as general 
implication
-ɸ(X,Y)→ ∃Z.ψ(Y,Z) 
- X,Y,Z are vectors of variables, ɸ and ψ are 

conjunction of predicates (including equations)
- subsume all common (integrity) constraints in 

database applications

chasing with a set Σ is Church-
Rosser
-terminates with a unique result
- the order of applying σ (∈Σ) is insignificant  



dependency σ (∈Σ) as general 
implication
-ɸ(X,Y)→ ∃Z.ψ(Y,Z) 
- X,Y,Z are vectors of variables, ɸ and ψ are 

conjunction of predicates (including equations)
- subsume all common (integrity) constraints in 

database applications

chasing with a set Σ is Church-
Rosser
-terminates with a unique result
- the order of applying σ (∈Σ) is insignificant  

too limited for 
network policies

the chase, strength & limitation



our 
contribution

extend the chase to networking
dependency σ (∈Σ) as general 
implication
-ɸ(X,Y)→ ∃Z.ψ(Y,Z) 
- X,Y,Z are vectors of variables, ɸ and ψ are 

conjunction of predicates (including equations)
- subsume all common (integrity) constraints in 

database applications

chasing with a set Σ is Church-
Rosser
-terminates with a unique result
- the order of applying σ (∈Σ) is insignificant  

richer 
dependencies
(of network 
policies)

retain the 
Church-Rosser 
property



/* P: reachability (forwarding) along 
R1R2R3 */ 
R(x,y) :- F(f,x,y1,x,1), F(f,x2,y2,1,2),  
   F(f,x3,y3,2,3), F(f,x4,y4,3,4),  
   F(f,x5,y5,4,5), F(f,x6,y6,5,6), 
   F(f,x7,y,6,y). 
%% permitting header modifications 
%% F(flow, source, destination, location, next-hop)

？

k’: k restricted to R2 
and source other than 
1.2.3.4 
y=y’:- F(f,x,y,2,3),   
FFFFFF(f,x’,y’,3,4), 
FFFFFx≠1.2.3.4.

/* P’: the result of chasing r with k */ 
R(x,y1 ) :-F(f,x,y1,x,1),F(f,x2,y1,1,2), 
    F(f,x3,y1,2,3), F(f,x4,y1,3,4), 
    F(f,x5,y1,4,5), F(f,x6,y1,5,6), 
    F(f,x7,y1,6,y1 ).

k: a key dependency 
y=y’:- F(f,x,y,u,w),  
  F(f,x’,y’,u’,w’).

P F S D L N

body

…
f x3 y3 2 3

f x4 y4 3 4

…
head x y

x3≠1.2.3.4?

extend the chase, insight

view P (body) as an 
incomplete database 
instance,
evaluate k’ on D



a datalog variant for incomplete information
-a variant of datalog, querying conditional tables (al
- lowing variables, whose values constrained by conditions)

fauré-log

/* network query on symbolic state */ 
H(u)[C(u)] :- B1(u1),···, Bn(un), [C1(u1),···,Cn(un)].  
%% u,u1,...,un are tuples with constants and variables(conditioned by 
constraints C,C1,…,Cn)



a datalog variant for incomplete information
-a variant of datalog, querying conditional tables (al
- lowing variables, whose values constrained by conditions)

fauré-log dependencies, for network policies

fauré-log, richer dependencies

/* network query on symbolic state */ 
H(u)[C(u)] :- B1(u1),···, Bn(un), [C1(u1),···,Cn(un)].  
%% u,u1,...,un are tuples with constants and variables(conditioned by 
constraints C,C1,…,Cn)

/* network dependencies chasable on symbolic states */ 
H(u) :- B1(u1),···,Bn (un ), [C1(u1),···,Cn(un)]. % tgd: the presence 
of Bi’s under the conditions Ci’s implies H 

[x/y, C(u)] :- B1(u1),···, Bn(un),[C1(u1),···,Cn(un)]. % egd: 
substitute symbol x for y, Ci’s are conjunction of (in)equality and 
auxiliary predicates



generalize the substitution of the chase to fauré-log evaluation  

generalize the chase step

dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[ �] : �B�[��] ;
3 let H0�[ 0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[ �] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^  0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�, 

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.

…

r1

rn

…

r r’

rn

r1

r,s1, …,sk, …,sm,r’

…

… 

r

…

…
…

…
(a) (b)

Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.
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dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[ �] : �B�[��] ;
3 let H0�[ 0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[ �] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^  0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�, 

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.
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dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[ �] : �B�[��] ;
3 let H0�[ 0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[ �] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^  0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�, 

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.
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Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.
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dependency is not “applicable” (e.g., the “premise” of the
dependency is not satisfiable), so the chase halts; Otherwise,
we proceed to compute and evaluate the new conditions under
a systematic substitution (line 6): if the new condition is UNSAT
(line 7), it signals an “impossible” network state, meaning
that r and � are incompatible; on the other hand, if the new
condition is satisfiable, we apply the corrections by systematic
substitutions (line 6) or new predicate insertions (H0� in line
8).

Algorithm 1: The chase with fauré-dependency
input : fauré-log rule r : Hr : �Br[�r],

fauré-dependency � : H�[x/y, �] : �B�[��]
output: r !� r

0

1 instantiate Br[�r] into c-tables D ;
2 let q be H�[ �] : �B�[��] ;
3 let H0�[ 0

�] = q(D) by fauré-log evaluation ;
4 if H

0
�[ �] is empty;

5 then halt
6 else

7 let �0
r = �r{x/y},�0

� = ��{x/y} ;
8 if �0

r ^ �0
� ^  0

� is UNSAT then halt;
9 else let r0 be Hr{x/y} : �Br{x/y}, H0�, [�0

r,�
0
�, 

0
�]

return r
0;

10 end

11 end

B. Discussion: chasing fauré-dependencies is Church-Rosser

Our main conjecture is that chasing with fauré-
dependencies, despite being complete for a larger class
of network dependencies via a more sophisticated procedure
(Algorithm 1), remains “Church-Rosser”. Given a set
of policy dependencies ⌃ (multiple network policies), if
chasing a fauré-log rule p (we chase a multi-rule program by
independently chasing each rule) with ⌃ by repeatedly chasing
with � 2⌃ is terminating, the ordering in which the �0

s are
chosen is insignificant. That is, for any terminating sequence
of dependencies from ⌃, p !··· · · · !�k

pk !··· · · · p0, the
end result p

0 is unique, and we write p !⌃p
0. This is

particularly appealing for reasoning about the joint effects of
a set of distributed policies (Figure 1) since the “interaction”
between them is insignificant.

We also point out an interesting twist with the new chase:
Let a chase sequence of r by ⌃ be s1, · · · , sk, · · ·, such that
for each k, sk is the result of applying some � 2⌃ to sk�1

(sk is the result of chasing sk�1 with �). The sequence is
terminal if it is finite and no dependency in ⌃ can be further
applied to it. In such cases, the chase with ⌃ is terminating
and the last element is called its result. With these notions,
Church-Rosser for the classic chase is shown in Figure 2 (a):
all (terminating) chasing sequences converge to a single rule
r
0. The unique end result in the case of fauré-dependencies,

however, becomes a set of rules � (= {r1, · · · , rn}): the chase
sequences still converge to the unique �, but the individual
chase sequences can lead to different elements rk 2 �. In
particular, each rk 2 � represents the policy-based network
behavior for a specific equivalent class.
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Fig. 2: Church-Rosser illustrated: (a) the classic chase; (b) the new
chase with fauré-log.
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