
Modern Network Troubleshooting with Declarative Debugging
Anduo Wang

Temple University
anduo.wang@gmail.com

Matthew Caesar
University of Illinois Urbana-Champaign

caesar@illinois.edu

1 Introduction
The broader initiative to modernize computer networks —
whether in public Internet infrastructure, hyperscale pri-
vate WANs and data centers, or the Internet of Things and
smart spaces — by transitioning from guesswork-based
protocols to provably correct software, primarily through
software-defined and programmable networks, has trans-
formed network management. The centralized control
software and programmable switches have enabled far
greater control — such as fine-grained resource orches-
tration and accurate traffic engineering. On the other
hand, the complexity of the resulting software system
has started to resemble the complexity of the protocols
we’ve been trying to shed. When anomalies occur, opera-
tors often find debugging difficult, especially if they were
not involved in writing the software in the first place. If
the complexity of modern networks does not magically
disappear, can we at least make them more manageable?
Can we make network management truly declarative so
that, instead of relying on operational network configura-
tions, users can focus on high-level intentions rather than
the low-level implementation of protocols and devices?

In the era of more capable SDN and programmable
networks, achieving this requires more powerful man-
agement tools. One important class of tool support that
has become both more important and more natural is net-
work troubleshooting with formal methods. Perhaps one
of the greatest achievements in this area is the collection
of production-grade network verification tools, which
outperform manual troubleshooting by orders of magni-
tude. Nevertheless, stepping outside the tools’ comfort
zone — verification tasks that are readily recognizable
— causes troubleshooting to revert to the same old daunt-
ing task, especially if the user lacks deep insight into the
network’s actual operation. This is not surprising: most
formal analysis in these tools is a “batch” activity that is
highly optimized for predefined problems, similar to how
program analysis is used in compilers for optimization.
Consider, for example, the lightning-fast checkers used
to verify all reachability properties across entire data cen-
ters. But in a live network managed by a human operator,
no two problems (symptoms) are the same and no two op-
erators are alike, just like when programmers create and
maintain large software systems, no two problems or pro-
grammers are alike. A programming-environment-like
troubleshooting platform that allows versatile, interactive,
and user-centered analysis is still missing in networking.

We take a first step towards a network troubleshoot-
ing environment by borrowing from algorithmic program
debugging (also known as declarative debugging) — a
debugging scheme that originated in logic programming
and has since seen widespread applications in impera-
tive languages [2, 4]. Given a symptom — an incorrect
behavior produced (computed) by the network, such as
unintended forwarding — and a modern network specifi-
cation, such as a formal executable model in the design
phase or the control software that actually drives the net-
work after deployment, we use a declarative debugger to
accurately locate the root cause: the specific line of code
in the network specification responsible for the error. We
emphasize the declarative nature of this approach: the
heavy-lifting work of tracing complex network execu-
tion and isolating all relevant computations is outsourced
to the debugger, the user only needs to provide the in-
tended semantics by answering “yes/no” questions. In-
deed, the user acts as an oracle — determining whether
an intermediary result is intended (correct) or not — as
the declarative debugger navigates through the buggy
execution. In the rest of this poster, we use a concrete
example to show the feasibility and potential of using
declarative debugging as a means to advance network
troubleshooting.

2 A network diagnosis problem
Figure 1 (c) depicts a network originally introduced by
Batfish [3] to motivate multipath consistency verifica-
tion. We consider a simplified version of diagnosing the
center network N for forwarding to N’s internal subnet
1.2.3.4/24: the intended forwarding is that the subnet
can be reached by the customer network (C), but not the
provider (P). To block traffic from P, n3 is configured
to drop the packets to 1.2.3.4/24. To enable connectiv-
ity with C, n1 and n2 are configured with flow entries
that forward traffic from C (e.g., c2) to 1.2.3.4/24. The
problem is that n1 is configured with multipath routing
by default: as n1 sends packets from c2 to 1.2.3.4/24
through both neighbors n2 and n3, c2 will experience
intermittent connectivity.

In addition to multipath consistency verification, which
is capable of catching the above error, it also allows for
a limited form of root cause diagnosis. Batfish builds
an intermediate representation of the network based on
Datalog. This representation forms a knowledge base
(ontology) of network facts and relations, which can be

C

P

 Nc2

c1 n2

n1

n2

n3

p2

2.2.2.0/24
3.3.3.0/24

1.2.3.4/24inconsistent(c2, 1.2.3.4/24)

n2(c2, 1.2.3.4/24)

n1(c2, 1.2.3.4/24)

nc2(c2, 1.2.3.4/24)

nc3(c2, 1.2.3.4/24)

n3(c2, 1.2.3.4/24)

n1(c2, 1.2.3.4/24)

1 inconsistent(S,D) :- n1(S,D),nc1(S,D).
2 inconsistent(S,D) :- n2(S,D),nc2(S,D).
3 inconsistent(S,D) :- n3(S,D),nc3(S,D).
4 n2(S,D) :- n1(S,D).
5 n3(S,D) :- n1(S,D).
6 n2(S,D) :- n3(S,D), D!=‘1.2.3.4/24'.
7 nc2(S,D) :- nc1(S,D).
8 nc3(S,D) :-

 n3(S,D), D=‘1.2.3.4/24'.//drop
9 nc2(S,D) :- nc3(S,D).

✔

✗

✗

✗

✔

✔

✔
faulty clause

1.2.3.4/24=1.2.3.4/24✔

(a) (b) (c)

Figure 1: Algorithmic program debugging: (a) an NoD-like forwarding program, (b) in the proof tree for the symptom
inconsistent(c2,

′ 1.2.3.4/24′): the true nodes (predicates) are marked with ✓, the false ones are labeled with ✗; the false
node nc3(c2,1.2.3.4/24) with only true children pinpoints the faulty clause, (c) An example network.

interactively queried to explain a property violation. The
Batfish diagnosis is inadequate: a formal definition of
“root causes” was never given. The burden of diagnosis —
asking the right queries — falls entirely on the user, rely-
ing on the user’s insight into the network’s operational
semantics (the correct interpretation of the intermedi-
ary NoD forwarding program). It is worth noting that
even this limited form of diagnosis was lost after the
Batfish implementation moved away from Datalog to
Java, where performance was prioritized at the expense
of diagnosis [1].

3 A solution with declarative debugging

A declarative program diagnoser troubleshoots a symp-
tom (e.g., an incorrect answer or a missing one) by inter-
acting with an oracle — often the programmer — through
simple questions, such as whether a specific result (e.g.,
an immediate computation) was intended or not. The
diagnoser builds a representation of the buggy execution
and guides the oracle — by asking necessary questions
— to systematically explore it and locate the root cause.
The main advantage is that, to identify the culprit of a
symptom in the code (e.g., a faulty statement), the oracle
only needs to provide the what — the program’s intended
meaning — without knowing the how — the program’s
actual execution. The clean semantics of logic program-
ming languages, such as Prolog and datalog, makes it
particularly amenable to declarative debugging: a clause
— a rule h : −b1, · · · ,bn that derives its head predicate
(h) from the predicates in its body (bi’s) — is faulty if it
derives (computes) an incorrect result (in the head) from
correct ones; In other words, a clause is faulty if it is
responsible for introducing the first error into the com-
putation. A symptom is a fact computed by the program
that was not intended — that is, it is an incorrect answer.
Given a symptom s — that is, an incorrect answer — the
declarative debugger only needs to search the execution
trace — such as a proof tree — of s to locate the faulty
clause.

As an example, consider again Figure 1 (c). A datalog-

like specification of network N’s forwarding is shown
in Figure 1, along with the clauses needed to define
the multipath-consistency property. Lines 4-6 define for-
warding similar to Batfish (NoD): n1(S,D) (n2,n3 respec-
tively) is true if packets with source S and destination
D is at n1; Lines 7-9 defines the impact of dropping a
packet: nC1(S,D) means the packet is either dropped at
n1 or was dropped along a path to n1. With the type
of predicates n,nC, lines 1-3 defines inconsistency for
a pair of source (S) and destination (D) to be true, if
packets can reach and be dropped at any of the nodes
(n2,n3,n3) simultaneously. For the symptom that traffic
from c2 to ′1.2.3.4/24′ experiences intermittent drop,
encoded by Inconsistent(c2,

′ 1.2.3.4/24′), its proof
tree is shown in Figure 1 (b). The root of the proof tree
is the symptom query, and every intermediary node i

is an intermediary result in the execution: i is derived
from its children by some clause c in the program. If
i is incorrect, the oracle (programmer) only needs to
confirm (answer) whether the children (used to derive
i) are true or false. If all the children are true, we find
the culprit c that introduces the first error. To locate the
faulty clause, we traverse this proof tree in post-order
and find that the first false node with all true children
is nc3(c2,1.2.3.4/24). n

c
3(c2,1.2.3.4/24) is derived by

the clause in line 8, which drops traffic to ′1.2.3.4/24′ at
n3 and is therefore the faulty clause we are looking for.

References

[1] M. Brown, A. Fogel, D. Halperin, V. Heorhiadi, R. Maha-
jan, and T. Millstein. Lessons from the evolution of the
batfish configuration analysis tool. 2023.

[2] R. Caballero, A. Riesco, and J. Silva. A survey of algorith-
mic debugging. ACM Comput. Surv., 50(4), Aug. 2017.

[3] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. NSDI’15,
USA, 2015. USENIX Association.

[4] E. Y. Shapiro. Algorithmic Program DeBugging. MIT
Press, Cambridge, MA, USA, 1983.

	Introduction
	A network diagnosis problem
	A solution with declarative debugging

