
Rethinking Network Policy Coordination: A Database
Perspective

Anduo Wang
Temple University
adw@temple.edu

Seungwon Shin
KAIST

claude@kaist.ac.kr

Eduard Dragut
Temple University
edragut@temple.edu

ABSTRACT
Database usage in the context of networking has been focus-
ing on managing factual data — network state. But database
systems are also renowned for mediating among semantic
data — data integrity constraints (ICs) that capture network
policies. This paper asks if and how can database systems
help with coordinating network policies in the semantically
rich environment of SDN and BGP. We identify several prob-
lems — disparate policies buried in the network that hinders
rather than facilitates coordination; manual control flow or-
chestration of SDN policies that burdens the SDN program-
mer; and overlooked conflicts among interdomain routing
policies that, though induced by multiple ASes, are only man-
ifested within a single AS. Driven by these unique problems,
we present a preliminary database solution that, using ICs
as a unifying knowledge representation, employs automated
reasoning to anticipate and to adjust the interplay between
policies and the rest of the networking world.

CCS CONCEPTS
• Networks → Network protocol design; Programming
interfaces; Network manageability.

KEYWORDS
knowledge representation, BGP, SDN, residue method

ACM Reference Format:
AnduoWang, Seungwon Shin, and Eduard Dragut. 2019. Rethinking
Network Policy Coordination: A Database Perspective. In APNet
’19: 3rd Asia-Pacific Workshop on Networking, August 17–18, 2019,
Beijing, China. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3343180.3343193

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’19, August 17–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7635-8/19/08. . . $15.00
https://doi.org/10.1145/3343180.3343193

1 INTRODUCTION
There have been increased interests in applying database
concepts and techniques to modern networking. Data man-
agement languages were adapted for distributed protocols
in declarative networking [15]. In the context of software-
defined networking (SDN), database transaction processing
was used for synchronizing network states [4, 12, 14]. More
recently, we take the entire network under a relational data-
base [22] and use the high-performance database system as
the controller. These efforts demonstrated the many benefits
of using database systems for managing network state — the
factual data. But database systems are also renowned for
mediating among semantic data — data integrity constraints
about what are the acceptable data.

In this paper, we ask if and how can database systems help
with managing network policies that can interact in complex
ways. As a first step, we reexamine policy interactions in
the semantically rich environment of SDNs and interdomain
routing. We identified several problems that are either over-
looked or hard to manage in the current network infrastruc-
ture, but may benefit from an alternative database approach.
First, network policies buried in the network can take

drastically different forms. Policies can be embedded in the
configurations of network devices such as a switch or a fire-
wall, wired in disparate extensions to the border gateway
protocol (BGP), the de-facto protocol and carrier for Inter-
net policies [20], or coded in a control software running
in SDNs [11, 19]. Such low level heterogeneous representa-
tion hinders rather than facilitates coordination. In contrast,
database systems use integrity constraints (ICs) as a unified
knowledge representation that can lift the policies out of the
network, opening up the door to automated coordination.
Second, in a centralized environment like SDNs, polices

are often intended for distinctive aspects of the network.
Such disjoint polices are jointly satisfiable and, collectively,
oversee the entire life of a single task. Yet, they are not neces-
sarily independent. A network operation meant to maintain
one policy might inadvertently violate another. The popu-
lar SDN solution is modular programming of the controller
software in which the polices live, and leaves the onus of
forming a correct modular composition to the programmer,
a job that only gets worse as the controller grows. In con-
trast, a database systemmight achieve the same coordination

https://doi.org/10.1145/3343180.3343193
https://doi.org/10.1145/3343180.3343193
https://doi.org/10.1145/3343180.3343193

APNet ’19, August 17–18, 2019, Beijing, China Anduo Wang, Seungwon Shin, and Eduard Dragut

by mediating the responsible network operations — a data
update problem that also takes into account the polices.
Finally, in the decentralized Internet, a network of inter-

connected autonomous systems (ASes), policies set by dis-
tributed ASes to achieve their potentially competing goals
can conflict. Despite extensive studies on route oscillation —
an anomaly across AS borders — and various seminal reme-
dies [6, 10], there still exist overlooked conflicts. In particular,
we made a case for conflicts that manifest themselves within
an AS: With BGP and its many extensions, an AS often at-
tempts to control path selection in a remote neighbor. That
neighbor, when being a common target by several such in-
fluential ASes — unaware of and with no visibility into each
other, might has to deal with conflicting effects of those ASes.
In contrast, the effects of ICs are well understood in data-
base systems, they are routinely processed with all relevant
knowledge extracted. We argue that we can leverage simi-
lar knowledge processing to predicate the interplay among
several AS policies, and to adjust them accordingly.
As a realization of these ideas, we present a preliminary

database solution, as a means towards a policy system for
modern networks that is more predictable, flexible, and man-
ageable. Specifically, we make the following contributions:

• Unifying knowledge representation. We lift the disparate
policies out of the network by introducing a unify-
ing knowledge representation with data integrity con-
straints (ICs) [7]. ICs are logical statements about what
are acceptable network state, offering a firm ground for
automated policy coordination.

• Managing complementary policies. We develop an up-
date orchestrater that coordinates complementary SDN
policies by ordering the corresponding operations. To
this end, we introduce semantic dependency to capture
whether an update, meant to restore one policy but
introduces new policy violations, requires additional
updates to maintain the overall policy compliance.

• Managing conflicting policies.We develop a policy nego-
tiator that enables an AS to anticipate conflicts among
“external” policies exerted by neighboring ASes, and
to adjust policies in conflict by automated transforma-
tion. To this end, we extend the knowledge reasoning
techniques used in semantic query processing to IC
processing.

2 MOTIVATING SCENARIOS
We examine complementary policies that oversee a single
network task in SDN and make a case for conflicts among
interdomain routing policies that are manifested within a
single AS. In both cases, we discuss the challenges and op-
portunities, and highlight the benefits a database solution
may bring.

Complementary policies
Network policies in a centralized environment are often

deliberately set for distinct objectives that are jointly satisfi-
able. These policies do not conflict, but are not independent
of each other either. Instead, they complement each other:
The disjoint policies oversee the entire life of a single task;
The network operations generated to realize these policies,
when performed in a proper order, complete that task.

The policies live in the SDN controllers — network in-
variants maintained by the control software — fall into this
category. SDN programmers often create complex SDN tasks
from multiple simpler software modules, each realizes a par-
ticular simple policy. These modules continuously monitor
and reconfigure the network — checking for policy viola-
tion and generating repairing updates. For example, secure
routing can be broken into a security module and a routing
module. The security module filters out suspicious traffic
requests — maintaining a policy that no traffic in a blacklist
can enter, the routing module configures data-plane path —
maintaining a policy that every path must match a traffic
request. Here, proper coordination relies on a strict ordering:
the security update (checking new traffic request against
the blacklist) must always precede the routing update (path
installation).
To achieve such coordination, the current approach is

modular programming. Though many SDN programming
platforms [17, 19] exist, the onus of forming a correct coordi-
nation logic still falls on the programmer. The programmer
has to clearly understand every policy implicitly embedded
in the software, their joint intent, and to anticipate a com-
prehensive control flow for all possible interactions. Besides,
the coordination logic, being also embedded in the software
such as a master program is hard to maintain or extend [17]:
as the SDN evolves with new modules, existing ones might
need to be decomposed and re-composed.
In contrast to the manual control flow coordination re-

quired in modular programming, we seek a data centric alter-
native. If we view the entire SDN state as data, the network
operations as data updates, we ask if we can automatically
coordinate the SDN software by controlling the responsible
data updates? Database systems are renowned for mediating
multiple data updates via concurrency control of the reads
and writes. But concurrency control only achieves data in-
tegrity among independent updates. Can we develop a new
update orchestrater to bring policy compliance among inter-
acting updates? If successful, such a data solution can free
the SDN programmers from the daunting job of modular
programming, and facilitate the evolution of SDNs beyond
their initial deployments.
Conflicting policies

Rethinking Network Policy Coordination: A Database Perspective APNet ’19, August 17–18, 2019, Beijing, China

Network policies in a decentralized environment run into
conflicts when a network object compliant with one policy
is considered a violation by another. A well-studied exam-
ple is the stable path problem in interdomain routing [5, 9]:
multiple path preferences for a common destination, set by
distributed ASes with potentially competing goals, can dis-
agree and fail to converge to a global path decision, leading
to an anomaly called permanent route oscillation. Here, the
root cause is the contradicting choices made about a com-
mon object by multiple policy makers — i.e. ASes. But, does
it follow that the manifestation of a conflict must also involve
multiple ASes — like in route oscillation?

dst
5

2

3

12
20

40

AS 3
AS 1

AS 2

AS 4

MIRO
Wiser
resolvent path

re

rc

rf

rb

ra

rd

1

nearest exit (hot potato)

AS 5

src

10

Figure 1: Path selection (to dst) within AS3 is jointly deter-
mined by the local nearest exit policy of AS3, the traffic engi-
neering policy of AS4, and the security policy of AS5.

Specifically, assuming each AS makes consistent route
decision within its boundary, can we rule out policy conflicts
happening within an AS? We refute this seemingly true
statement by the following example. Consider route selection
for dst in AS3, shown in Figure 1. AS3 has a local nearest exit
policy — the numbers depict the IGP costs — that picks a path
with lowest cost (highlighted in bold black). But AS3 is also
influenced by its upstream neighbors AS4, AS5: AS5 considers
AS2 insecure which, expressed as a MIRO policy [24] — a
BGP extension that enables negotiating alternative paths,
drives AS3 to avoid AS2 in the downstream (in red); AS4, on
the other hand, being concerned about traffic engineering,
runs the Wiser extension [16] with AS3 to select a path that
jointly optimizes cost in AS3 and itself (in blue). These policies
conflict as they disagree about what path AS3 should use —
black (local policy with IGP), red (security with MIRO), or
blue (TE with Wiser)?

More generally, path selection within an AS is not isolated
from the external world — its neighbors [16, 18, 24]. Prior
work on route oscillation [6, 10] does not address this type
of conflicts. In fact, those solutions often assume monolithic
policies within individual ASes. In addition, while our con-
flicting example is admittedly contrived, we envision that,
several trends in networking research and practice — more

flexible policies [8, 16, 24] and architectural support for mul-
tiple policy extensions to coexist [21] — can only fuel such
conflicts.
We ask how to find a path choice (highlighted in purple)

that reasonable matches all three policies? If we model net-
work policies by ICs, can we develop new techniques similar
to database semantic transformation — transformation of a
query by knowledge extracted from an IC — to anticipate and
resolve the impact of a policy? ICs in a database system is
routinely processed to facilitate query processing, resulting
in transformed query that gives equivalent answer but eval-
uates faster [2, 7]. But such IC techniques is designed for an
IC and a query, can we develop a new knowledge reasoning
technique to infer and control the interplay among multiple
network policy ICs? If successful, such a database solution
can help evolve the Internet towards a policy system that is
more flexible, easier to understand and manage.

3 A DATABASE SOLUTION
To answer the questions raised in § 2, this section presents a
preliminary database solution. Our observation is that data-
base system not only manages factual data — relations that
are suitable for representing network state, it also mediates
among semantic data — ICs that naturally express network
policies. Modeling network policies by ICs — logical state-
ment about what are preferable network state — unifies var-
ious network policies that are previously buried in different
parts of the network. More importantly, the logic-based ICs
lend themselves to automated reasoning, enabling the fol-
lowing coordination services:
A new update orchestrater for complementary policies
that predicates how a network update affects a policy IC. The
orchestrater orders the updates in such a manner that, any
policies that have been previously restored by some update
will never be violated by updates scheduled afterwards.
Policy negotiator for conflicting policies that jointly de-
termine a single network. The negotiator predicates the in-
terplay between two policy ICs, and uses knowledge from
one policy IC to transform another policy, in such a manner
that a less important IC will be semantically constrained to
ensure compliance with the more important one.

3.1 A Knowledge Representation
We view network policies as declarative properties of the
network states that constrain — rather than operational in-
structions that generate — the network behaviors.
Network state as relations

First, we review the database representation of the entire
network state proposed in our prior work [22]. A network
state — traffic conditions, topologies, configurations etc— is
a finite set of ground relations (predicates), implemented by
database tables and views. To simplify discussion in the rest

APNet ’19, August 17–18, 2019, Beijing, China Anduo Wang, Seungwon Shin, and Eduard Dragut

of the paper, we assume a data schema as follows. We note
that the particular choice of the scheme is insignificant.

1 % intradomain tables
2 tp(sid,nid) % topology
3 rm(fid,sid,nid) % end-to-end reachability

(matrix)
4 cf(fid,sid,nid) % configuration (forwarding

table)
5 path(pv,cost,iid,eid)% internal path
6 % interdomain tables
7 aspath(did,rid,apv) % AS level path

Among the intradomain tables, tp is the internal router-
level topology table that stores link pairs (sid,nid), rm is the
end-to-end reachability matrix table that keeps flow require-
ment identified by (fid) between two hosts sid,nid, cf is the
router configuration that describes for each flow (fid) the
next-hop configuration: for the current router sid, the next
hop is nid. path table specifies for every path pv (path vector)
the internal cost cost between the ingress router iid and the
egress router eid. The interdomain table structures network
state exchanged across domain borders: aspath(did,eid,apv)
represents the AS-level paths to destination did through the
border router eid along an AS level path vector apv (list of
AS identifiers along the path).

Each tuple (i.e. data item) in the relation is a ground (free of
variables) predicate that encodes a fact — factual knowledge
of the network state. For example, tp(X,Y) is asserts a link
between two nodes X,Y.
Network policy as integrity constraint (IC)
A network policy is collection of logical statements over

the network predicates, called ICs, stating what constitutes
an acceptable state. We adopt the denial rule of the form :-

b1,...,bn, meaning that the body predicates bi, when jointly
satisfied, will lead to False (empty head). A denial rule elimi-
nates any network state simultaneously satisfies all the body
predicates. For example, we represent the routing and secu-
rity policies in § 2 as follows:

1 % routing policy
2 IC1 :- ¬rm(F,S,D),cf(F,X,Y).
3 IC2 :- rm(F,S,D),¬cf(F,X,Y).
4 % security policy
5 IC3 :- rm(F,S,D),blacklist(S,D)

The routing policy is referential constraints that require
the per-switch configuration (cf) to match traffic requests
(rm): IC1 forbids a switch configuration cf(F,X,Y) that does
not correspond to any traffic request ¬rm(F,S,D), IC2 avoids
missing switch configuration for an existing traffic request.
The security IC3 prevents the network from installing any
path for traffic that also appears in a blacklist. Similarly, the

MIRO interdomain policy that prevents the Internet from
selecting a path through AS2 can be expressed by IC4.

1 % MIRO policy
2 IC4 :- aspath(D,N,P), ('AS2' in P).

To see the strength of the IC representation, consider the
Wiser policy of AS3 that jointly optimize end to end path
from AS4 to AS3.

1 % Wiser policy
2 Wiser(D,Rp,C') :-

aspath(D,Re,P),path(P',C,Rp,Re),C'=norm(C).
3 best(D,min<C>) :-

Wiser(D,Rp,C1),Advertise(Rp,C2),C=C1+C2.
4 IC5 :- Wiser(D,Rp,C),best(D,C'),C>C'.

Wiser is a view created by AS3 that computes — with the
help of the auxiliary function norm — a normalized path cost
by joining aspath and path of AS4. Suppose AS4 creates and
exposes to AS3 a view Advertise(R,C), advertising the normal-
ized path cost C2 for the internal path through the peering
router Rp. With Advertise, AS3 can express its Wiser policy as
a denial rule that excludes from consideration any peering
router Rp that leads to a path with a higher cost (C>C’).
3.2 Managing Complementary Polices
This section presents an update orchestrater that allows an
SDN to be controlled by multiple control polices without
worrying about how to form a coherent coordination logic.

Essentially, we introduce semantic dependency to organize
updates into a hierarchy called semantic layering. Updates
at a higher layer can trigger future updates to the lower
layer, as the upper layer update introduces new violations
to polices maintained by the lower layers. That is, the upper
layer update is complete — finally transform the network
into a new state compliant with all polices — only when all
the updates at lower layers are also complete.
Semantic dependency
Suppose two polices X and Y maintain ICX and ICY via

updates UX and UY, respectively. UX semantically depends on
UY if (1) UX can introduce new violations to ICX, i.e. if UX can
render ICY False on some network state; (2) but the updates of
Y can never violate X policy, i.e.UY can never falsify ICX. Given
a set of polices and all the update dependencies, a topological
sort over the dependency graph will give an ordering among
the updates.

As an example of semantic dependency, consider the secu-
rity and routing polices (§ 2), suppose the update restoring
security, denoted by Usec, is to drop any unsafe traffic requests
— delete rm entries that also appear in some blacklist table;
The update for maintaining routing, denoted by Urt, is to add
(resp. remove) a path — cf entries — for traffic requests (resp.
withdraws) in rm. Usec will introduce transient violation to

Rethinking Network Policy Coordination: A Database Perspective APNet ’19, August 17–18, 2019, Beijing, China

IC2 until the routing application takes action to remove the
corresponding configurations in cf. But Urt will never affect
security policy. Thus Usec depends on Urt.
Determine semantic dependency

We can automatically determine semantic dependency by
database irrelevance reasoning [1]. The trick is to cast seman-
tic dependency as an irrelevant update problem: we associate
with each IC :- b1...bk an auxiliary view vIC(atts):- b1...bk.
vIC materializes violation to the IC, also called violation view,
where atts are the variables in the body of the IC (i.e.b1...bk).

With the violation view vIC — a virtual table computed by a
query, semantic dependency is reduced to checking whether
a database update can alter the result of vIC (query). In other
words, X depends on Y if UX is relevant to (can alter) vICy but
UY is irrelevant to vICx. The database community developed a
method to automatically check (ir)relevance by satisfiability
reasoning [1].

We show the intuition of (ir)relevant update reasoning by
an example. Consider again the security and routing policy.
The routing update cannot alter security view, because ei-
ther deletion nor insertion on cf touch the body of security
view, namely rm or blacklist. The security update, however,
is the deletion of suspicious traffic, characterized by the con-
dition rm(F,S,D)/\blacklist(S,D). But this condition and the
routing view body is jointly satisfiable. Thus there exists
some security deletion that can alter the routing view.
3.3 Managing Conflicting Policies
This section presents a policy negotiator that allows an AS to
be jointly controlled by policies set by multiple (potentially
competing) neighbors.

Y

X & Y’
OK?m

t(X)

br
(X,Y)bl(Y)

X policy

Y policy

XY’
OK?

ASes

route flow

policy flow

legend

conflict
resolution

policiesX, Y

AS IDm,t,bl,br

Figure 2: Policy negotiation

Figure 2 shows the typical operation of the negotiator
deployed at AS AS m: Suppose AS t (top) proposes to AS m a
policy X, AS bl (bottom left) proposes a policy Y, but X conflicts
with Y; Or AS br (bottom right) proposes two policies X,Y

without being aware of the conflicts between them at AS m.
In both cases, the policy negotiator will automatically detect
conflicts and recommends a resolution — if AS m favors X over
Y, the policy negotiator will transform Y into Y’ that takes
into account X, and negotiate the X compliant Y’ with AS bl,
or the X&Y’ with AS br.

Central to the policy negotiator is a policy transformation
process based on the residue method. The residue method
is a semantic transformation process, it was originally de-
veloped for query optimization where ICs were processed
to semantically constrain a query to accelerate evaluation.
The idea is that, the impact — all useful information — of
a policy can be extracted by a theorem proving technique
called (partial) subsumption [3]. Given two policies X and Y

as inputs, partial subsumption outputs a fragment of X called
residue that characterizes the additional conditions that must
be satisfied for Y to be compliant with X. That is, residue
anticipates the impact of X on Y.
(Partial) subsumption. For two policy ICs P,Q, P subsumes
Q — P is more general — if there exists a substitution that
makes P a subclause of Q. Take ICM and ICM’ (in the following
code) as an example: ICM is a policy that requires all paths
to bypass AS2, ICM’ is a more specific policy that avoids AS2

only for paths to a malicious destination. ICM subsumes ICM’

as policy M entails the more specific M’. That is, partial sub-
sumption implies compliance: any network consistent with
M is also compliant with M’.

1 ICM :- aspath(I,R,P), ('AS2' in P).
2 ICM ′ :- aspath(D,X,Y), ('AS2' in Y), D='malicious_d'.
3 ICd :- aspath(D,X,Y), D='malicious_d'.

What interests us is partial subsumption that indicates
policy conflicts. IC Q is partially subsumed by IC P when Q is
subsumed by a subclause of P. For example, ICM partially sub-
sumes — via the subclause :- aspath(I,R,P) — ICd, an alterna-
tive security IC that simply avoids the malicious destination.
These two policies conflict — a path avoiding malicious_d but
waypointing AS2 is considered safe by ICd but perceived inse-
cure by ICM. Similarly, one can find a path that agrees with
ICM but violates ICd.
Detecting policy conflicts by residue. To detect conflicts,
we only need to check for partial subsumption by leveraging
the subsumption algorithm developed in [3]. The subsump-
tion algorithm tries to construct a refutation tree with the
subsuming clause as the root and elements from the sub-
sumed clause for resolution. The fragment left at the bottom
of the refutation tree is called residue — it states a condition
that must be satisfied for the to-be-subsumed clause to be
compliant with the subsuming clause. A “null” residue forms
a proof of subsumption, whereas a non-trivial residue — nei-
ther “null” nor redundant — explains what is still lacking
that lead to conflicts.
For example, the refutation tree constructed for ICM and

ICM’ in Figure 3 (left) gives a “null” residue, thus proves M’’s
compliance with X. On the other hand, the refutation tree in
Figure 3 (right) gives a non-trivial residue :- (’AS2’ in P),
meaning that an extra condition — ¬(’AS2’ in P) — must be

APNet ’19, August 17–18, 2019, Beijing, China Anduo Wang, Seungwon Shin, and Eduard Dragut

taken into account for the alternative security policy to be
compliant with M.
Resolving policy conflicts by residue annotation.
Residue also explains conflict, characterizes what is missing,
thus offers a natural fix. We only need to add the residue to
the policy that is to be transformed for conflict resolution.
Specifically, for two conflicting policies P,Q where P is con-
sidered more important, the policy negotiator operates as
follows: It runs the subsumption algorithm that takes P as
the subsuming clauses, and outputs a non-trivial residue r.
The residue r is then included in Q to remove the conflict. For
example, to annotate the residue in Figure 3 (right), we first
add it to the body of ICd. Then, the residue is interpreted as
an additional logical condition.

:- route(I,R,P):- route(I,R,P), ('AS 2' in P)

:- (‘AS 2' in P) :- (‘AS 2' in P)

null

MIRO elements of R2

:- route(I,R,P):- route(I,R,P), ('AS 2' in P)

:- (‘AS 2' in P)

MIRO elements of R1

:- route(D,X,Y):- aspath(I,R,P), ('AS 2' in P)

:- (‘AS 2' in Y) :- (‘AS 2' in Y)

null

ICM elements of ICM’

:- route(D,X,Y):- aspath(I,R,P), ('AS 2' in P)

:- (‘AS 2' in Y)

ICM elements of ICd

{I=D,R=X,P=Y} {I=D,R=X,P=Y}

Figure 3: Refutation tree: the residue (in red) at the bottom
shows the impact of MIRO policy (ICM) on the more specific
MIRO policy (ICM’ on the left) and the security policy (ICd on
the right)

1 % security IC annotated with MIRO residue
2 :- aspath(D,X,Y), D='malicious_d', {:- ’AS2’ in Y}.
3 % MIRO compliant security policy (after unfolding

the residue)
4 :- aspath(D,X,Y), D='malicious_d', ¬(’AS2’ in Y).

4 RELATEDWORK
Policy languages. SDN languages offer various constructs
for expressing policies as an integrated part of the control
software. Declarative networking [12, 15] uses a language
construct closer to our knowledge representation. However,
policies are still embedded in the program. In contrast, our
knowledge representation decouples the policies from the
control plane, and enables automated reasoning for a broader
set of policy interactions.
SDN policy coordination.Many SDN platforms use mod-
ular programming to facilitate policy composition — e.g.,
Pyretic [19] introduces specialized composition operators
to stitch together policy functions, CoVisor [13] uses Open-
Flow rule composition as the common interface to combine
policies developed in different platforms. What tells us apart
is that we aim for system level support that automates com-
position. In interdomain routing, restricted policy languages
and policy guidelines were proposed to ensure global path
convergence among multiple AS path preferences. Our work

addresses a different overlooked form of conflicts that occur
within an AS.
BGP policy coordination. Many extensions to BGP [8, 16,
23, 24] attempted to enable more flexible BGP policies. These
proposals often consider backward compatibility with the
legacy BGP system but provide very little support for joint
control among themselves. The only work we are aware of
that considers the co-existence of many BGP variants is D-
BGP [21] which studied architectural features needed for
multiple interdomain protocols that are partially deployed.
But D-BGP still assumes a single extension within an AS. To
our best knowledge, our work is the first attempt to allow
the AS to simultaneously deploy multiple extensions.

5 LIMITATIONS
This section acknowledges several limitations and discusses
possible mitigation plans. First, the IC representation is un-
conventional and requires some effort to express common
policies like path ranking. We plan to perform a compre-
hensive expressiveness study, and compile a template for
common SDN and BGP policies. An alternative is to develop
supporting tools to bridge popular policy configurations and
the ICs. Second, using ordering of network updates as a
means to coordinate SDN policies requires the update depen-
dency to be acyclic. We consider cyclic dependency a very
interesting and practical problem, but more theoretical stud-
ies are needed. Nevertheless, for acyclic policies, our method
still improves over existing solutions. Finally, ASes in the
interdomain may not share their policies due to commercial
concerns. As ongoing work, we are policy anonymization
technique with inductive generalization. Instead of exchang-
ing plain policy ICs, ASes can advertise an aggregate by
computing their inductive generalization. That being said,
a comprehensive solution to interdomain policy exposure
may be impossible, and is beyond the scope of this work.

6 CONCLUSION
We reexamined several challenges in coordinating policies of
modern networks: the disparate policies buried in different
parts of the network that hinder rather than facilitates coor-
dination; the complementary SDN policies that, to cooperate
to complete a single task, can interact in subtle ways as the
network updates meant to restore one policy inadvertently
violate another; and the overlooked conflicts within an AS
caused by multiple neighbors. We discuss why existing solu-
tions fall short and present an alternative database approach.
Our solution explores the data integrity constraints as a uni-
fying knowledge representation for network policies, and
employs logic reasoning about ICs to precisely and auto-
matically predicate and adjust the behavior of the network
policies.

Rethinking Network Policy Coordination: A Database Perspective APNet ’19, August 17–18, 2019, Beijing, China

REFERENCES
[1] J. A. Blakeley, N. Coburn, and P.-V. Larson. Updating derived relations:

Detecting irrelevant and autonomously computable updates. ACM
Trans. Database Syst., 1989.

[2] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to
semantic query optimization. ACM Trans. Database Syst., 15(2):162–
207, June 1990.

[3] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, Inc., 1997.

[4] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Padman-
abhan, T. Petty, K. Duda, and A. Chanda. A database approach to sdn
control plane design. SIGCOMM Comput. Commun. Rev., 47(1):15–26,
Jan. 2017.

[5] N. Feamster, R. Johari, and H. Balakrishnan. Implications of auton-
omy for the expressiveness of policy routing. IEEE/ACM Trans. Netw.,
15(6):1266–1279, Dec. 2007.

[6] L. Gao and J. Rexford. Stable Internet routing without global coordi-
nation. In ACM SIGMETRICS, 2000.

[7] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints:
Semantics and applications. In Logics for Databases and Information
Systems, 1998.

[8] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing. In
ACM SIGCOMM, 2009.

[9] T. G. Griffin, A. D. Jaggard, and V. Ramachandran. Design principles
of policy languages for path vector protocols. SIGCOMM ’03, pages
61–72, New York, NY, USA, 2003. ACM.

[10] T. G. Griffin and J. L. Sobrinho. Metarouting. In Proceedings of the 2005
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’05, pages 1–12, New York,
NY, USA, 2005. ACM.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. Nox: Towards an operating system for networks. SIGCOMM
Comput. Commun. Rev., 38(3):105–110, July 2008.

[12] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker.
Fml: Practical declarative network management. In Proceedings of the
1st ACM Workshop on Research on Enterprise Networking, WREN ’09,
pages 1–10, New York, NY, USA, 2009. ACM.

[13] X. Jin, J. Gossels, J. Rexford, and D. Walker. Covisor: A compositional
hypervisor for software-defined networks. NSDI’15, pages 87–101,
Berkeley, CA, USA, 2015. USENIX Association.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
a distributed control platform for large-scale production networks.
OSDI’10, 2010.

[15] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
routing: Extensible routing with declarative queries. SIGCOMM ’05.
ACM, 2005.

[16] R. Mahajan, D. Wetherall, and T. Anderson. Mutually controlled rout-
ing with independent ISPs. In NSDI, 2007.

[17] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to express and
automatically reconcile network policies. In SIGCOMM ’15.

[18] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig. In-
terdomain traffic engineering with bgp. Comm. Mag., 41(5):122–128,
May 2003.

[19] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. Modular
sdn programming with pyretic.

[20] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, RFC Editor, 2006.

[21] R. R. Sambasivan, D. Tran-Lam, A. Akella, and P. Steenkiste. Bootstrap-
ping evolvability for inter-domain routing with d-bgp. SIGCOMM ’17,

New York, NY, USA, 2017. ACM.
[22] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey. Ravel: A database-

defined network. SOSR ’16. ACM, 2016.
[23] Y. Wang, I. Avramopoulos, and J. Rexford. Design for configurability:

Rethinking interdomain routing policies from the ground up. IEEE
J.Sel. A. Commun., Apr. 2009.

[24] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing. In ACM
SIGCOMM, 2006.

	Abstract
	1 Introduction
	2 Motivating Scenarios
	3 A Database Solution
	3.1 A Knowledge Representation
	3.2 Managing Complementary Polices
	3.3 Managing Conflicting Policies

	4 Related work
	5 Limitations
	6 Conclusion
	References

