
Flexible Routing with Policy Exchange
Bin Gui, Fangping Lan, Anduo Wang

Temple University
Philadelphia, USA

ABSTRACT
BGP and its alternatives alike, struggle with distributed pol-
icy making in the absence of a central authority: BGP priori-
tizes independence of the participating networks (e.g., ASes),
imposes zero coordination, but has to tolerate inflexible poli-
cies each network can express. On the other hand, BGP alter-
natives (source routing, for example), through coordination,
trade independence for flexibility, but only achieve flexibility
partially. This paper asks, to achieve flexible routing, what is
the fitting adjustment between network independence and
coordination? To answer this question, we propose a simple
principle that the sole end to interfere with the flexibility of
a participating network is to prevent harms — decreasing
the level of flexibility — to others. As an instantiation of this
principle, we introduce the concept of policy exchange that
dynamically adjusts independently set policies on the fly, and
develop a preliminary implementation with conditional ta-
ble, a strong knowledge representation system that allows us
to distribute and manipulate policies with the usual SQL-like
operators. Our preliminary experiments on realistic network
topology and synthetic policies are encouraging.

CCS CONCEPTS
•Networks→Routing protocols;Network management; •
Computing methodologies→ Reasoning about belief and
knowledge.

KEYWORDS
Policy exchange, interdomain routing, conditional tables,
knowledge representation

ACM Reference Format:
Bin Gui, Fangping Lan, Anduo Wang. 2021. Flexible Routing with
Policy Exchange. In 5th Asia-Pacific Workshop on Networking (AP-
Net 2021) (APNet 2021), June 24–25, 2021, Shenzhen, China, China.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3469393.
3469395

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet 2021, June 24–25, 2021, Shenzhen, China, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8587-9/21/06. . . $15.00
https://doi.org/10.1145/3469393.3469395

. . . how to make the fitting adjustment between
individual independence and social control . . .That
principle is, that the sole end . . . in interfere with the
liberty of [any of their member], is self protection. That
the only purpose is . . . to prevent harms to others.

John Stuart Mill, On Liberty

1 INTRODUCTION
The Internet consists of independently operated networks
(i.e. autonomous systems, or ASes) that use dissimilar policies
to collectively drive global routing. It is probably the most
important instance of — in the absence of a central authority
— distributed policymaking [1, 2, 8, 12, 33, 35, 36]. And Border
Gateway Protocol (BGP) [34] is the one and only routing
protocol that supports such policies.

flexibility

independence

coordination
BGP

BGP alternatives
(source routing,
multipath,
overlay …)

Figure 1: To achieve flexibil-
ity, what is the fitting adjust-
ment between network inde-
pendence and coordination?

One reason that con-
tributes to BGP’s unique
role is the extreme po-
sition taken by BGP
that aligns itself with
the network owners:
Route preference can
be arbitrary and set
solely based on lo-
cal metrics; only the
best route used for
packet forwarding is
re-districted to selected
neighbors from which
packets are allowed;
only the route itself is

exposed while the policies governing the routing process
are sensitive information, thus are hidden from the external
Internet. Together, these designs make the operation of each
AS independent from the rest of the Internet, and the AS
policies are affected only by direct neighbors; But the same
design also makes distributed policies inflexible: the network
edge and the transit ASes alike have little control over traf-
fic path, their influences are often limited to the first hop.
As summarized in Figure 1, BGP prioritizes individual inde-
pendence, tolerates routing inflexibility, and refrains from
remote coordination.

In contrast, many attempts to improve and/or replace BGP
strive for more flexible policies, and do not shy away from
coordination. Source routing [6, 16, 39, 40] allows the source
AS to control the entire path, multi-path routing [14, 21, 38]
improves transit AS’s visibility to available paths via mul-
tiple routes computation, overlay routing [5, 21] combined

https://doi.org/10.1145/3469393.3469395
https://doi.org/10.1145/3469393.3469395
https://doi.org/10.1145/3469393.3469395

APNet 2021, June 24–25, 2021, Shenzhen, China, China Bin Gui, Fangping Lan, Anduo Wang

with source and/or multi-path routing harnesses the flexi-
bility of those alternatives on selected participants. These
flexibility enablers, however, are all at odds with AS indepen-
dence in some sense 1: Source routing forces the transit ASes
to expose their policies in a universally identical manner
(differentiating policies for different sources are impossible),
multi-path routing burdens the transit nodes to maintain
routes that are not their first choice; and overlay routing
imposes a form of virtual circuit service model into the par-
ticipants. Besides, most of these schemes improve flexibility
only at selected participants with best effort: Source routing
enhances the sources with more choices at the cost of the
transits; multipath routing improves path diversity at the
upstream nodes at the cost of the downstream; and overlay
links still rely on the underlying routing (potentially over
BGP). In sum, these BGP alternatives, through coordination,
trade independence for flexibility, but only achieve flexibility
partially.
In light of the fundamental tradeoff in the foregoing dis-

cussion, this paper asks, to achieve flexible routing, what is the
fitting adjustment between network independence and global
coordination? To answer this question, we argue for a simple
principle that the sole end to interfering with the flexibility of a
network is to prevent harms — decreasing the level of flexibility
— to others.

The principle implies that a flexible routing system should
support all legitimate policies — those can be satisfied along
some existing paths while not hindering others. But existing
routing schemes, to our best knowledge, fail to admit all legit-
imate policies. As a first step towards realizing our principle,
we study and map the failure scenarios into two categories:
Depending on the type of (unwanted) policy interactions
that leads to the failure, the first category involves an overly
strong policy that perfectly matches a node’s local concern
but unnecessarily excludes policies available to other nodes
along the same path affecting overlapping traffic. In the sec-
ond category, seemingly unrelated policies affecting disjoint
traffic, while legitimate on their own, can mutually exclude
each other if they cross a common intermediate node. In both
cases, the solution is to discover the “right” policy that firmly
expresses local interests, but also adapts (generous) to others’
needs — including those over overlapping traffic, and those
referencing a shared critical node — as much as possible. Our
goal is to make such intelligent policy discovery happen by
exposing minimal policy information.
Specifically, we introduce policy exchange in which in-

dependently set policies are iteratively exchanged between
direct neighbors, and adjusted as needed, in a hop by hop
manner like classic distance vector algorithm: Each partici-
pating network, upon receiving a policy fragment announce-
ment from a direct neighbor — the announcement represents
that neighbor’s request to protect its internal concern that
1There are other arguments against these alternatives in terms of scalability
and dataplane support etc., but this paper focuses on the policy issues.

potentially depends on external decisions, decides whether
to honor the request in the fragment: if the current node de-
termines to support the neighbor’s concern, but figures that
it alone cannot guarantee the fragment within local means
(e.g., tweaking local preference or route exporting policies),
the current node will then re-distribute the fragment — with
transformation to reflect its role as well as concealing the
identify of the original sender. The hope is that, by distribut-
ing only necessary policy fragments, policy exchange will
retain the network independence we hold dear, as well as
give sufficient visibility into the rest of the Internet to locate
the right policy.
To show that policy exchange is technically feasible, we

present a preliminary implementation with conditional ta-
bles [3, 4, 20], a knowledge representation system originated
in the database community. Conditional table enhances tra-
ditional tables with variables and tuple conditions, making it
a powerful knowledge representation for policies, allowing
policies to be passed around like regular factual data. More
importantly, conditional tables allow the usual SQL-like data
query and manipulation (select, projection, join etc.), mak-
ing it a convenient vehicle for rapid prototyping of policy
exchange mechanisms (e.g., policy fragment generalization
and redistribution). We also note that policy exchange will
not magically remove all difficulties with distributed policy
making: Policy exchange will not move policy enforcement
to the most fitting location hence cannot be used to suppress
the impact of finer policies; and it does not detect or resolve
conflicts among simultaneously unsatisfiable policies. Nev-
ertheless, our initial implementation is encouraging, and we
hope that policy exchange, with some luck, may infect the
design of a more flexible future Internet.

2 A SIMPLE PRINCIPLE (EXPLAINED) BY
FAILURES

Our main thesis is that a policy should be admitted as long
as it does not harm others, that is a path p that satisfies the
policy exists and that the selection of p does not eliminate
other policies. We say that a policy is legitimate if it is admit-
table. To guide our design towards a flexible routing system
(detailed in § 3) that permits all legitimate policies, we an-
alyze the scenarios when an inflexible routing system fails.
We map the failures into two categories depending on the
type of interaction that leads to the failure.
Policies affecting shared traffic along a single path.

The purpose of a policy is to codify a node’s (whether at the
granularity of an AS or a router) own traffic concerns (service
requirement or resource restriction). Yet an overly strong
policy statement, though perfectly captures the local interest,
may rob the choices available to other nodes along the same
path. When that is the only path that simultaneously satisfies
all the nodes along it, an overly strong policy placed by one
node effectively makes it impossible to admit a legitimate

Flexible Routing with Policy Exchange APNet 2021, June 24–25, 2021, Shenzhen, China, China

2

0

3

1

d1

(1.2.3.4/24)
d2

(5.6.7.8/24)

s

policy (p0):
split traffic to d1/d2

between (1,0) and
(2,0)

policy (p3):
for traffic to d1,
prefer 2 over 1

d2 d1

1

d
(1.2.3.4/16)

s2

765

s1 s3

policy (p2):
fast delivery
for d

policy (p1):
secure
delivery for d

policy (p6, p7):
on behalf of s2,s3,

fast delivery to d

policy (p5):
on behalf of s1,
secure traffic to d

p3?

2

3 4

Figure 2: Inflexibility scenariosmapped into two categories:
(left) overly strong policy (p0) unawares of others eliminate
otherwise legitimate policies (p3) along the same path over
shared traffic, (right)multiple policies that are seemingly in-
dependent can be mutually exclusive if they are realized on
paths that cross a common “critical” node.

policy of another node. This reduces the “overall” level of
flexibility of the entire routing system.

For example, Figure 2 (left) depicts four ASes (nodes 0,1,2,3)
that compute paths to carry traffic between a (source) host
s and two (destination) prefixes d1,d2. AS3’s policy p3 (on
behalf of s) desires traffic destined to d1 to go through the
more preferred provider AS2. p3 is satisfiable: there exists a
path [320] that not only complies with this restriction, but is
also compatible with AS0 whose policy p0 balances traffic to
d1,d2. Whether p3 can actually be enforced or not, however,
depends on how p0 is implemented — to split incoming traffic
AS0 can either instruct d1 traffic to use link (0,2) (d2 traffic
on (0,1)), or instruct d1 to use (0,1) (d2 on (0,2)). Among
the two options, only the former will expose path [20] to
AS3, which in turn selects [320] and implements p0. Lacking
visibility into of the upstream policy p3, AS0may blindly pick
the “wrong” implementation, announcing d1 to AS1 (d2 to
AS2), and excluding the otherwise p3-compliant path [320].

BGP is known to suffer from such inflexibility, and source
routing only address this problem partially: while source
routing allows A0 to expose p0 to the source — AS3 — where
route selection is made, it does not prevent p3 from making
the overly strong policy that uses (0,2) for d1 (d2 traffic on
(0,1)). That is, source routing allows route decision at the
source, but does not facilitate the downstream ASes to arrive
at the right policy that increases choices at the source. To
accommodate every legitimate policy, the routing system needs
to facilitate individual AS to arrive at “informed” policies that
not only express its own concern, but are also aware of others
— permitting as wide a latitude as possible in the construction
and enforcement of policies at other ASes.

Policies affecting disjoint traffic crossing a common
node.

Policies for disjoint traffic along separate paths can still
inadvertently interfere with each other. When the policy
compliant paths cross a common node, policy made at that
node to accommodate one flow of traffic may lead to the
rejection of another flow. Hence, the nodes at the potential
“joint” must carefully craft their policies to simultaneously
admit all the flows (and the policies that defined them).

Consider the three source nodes (s1,s2,s3) and a destina-
tion prefix (d) in Figure 2 (right): Policy p5 demands secure
traffic delivery via some downstream AS1 (a firewall is proba-
bly deployed at AS1), p6,p7 require faster delivery via AS2. The
network can simultaneously accommodate all these policies
with the routes highlighted — the dashed and solid arrows
depict routes selected for traffic from s1 and s2/s3, respec-
tively. This route selection, however, requires AS3 to make a
proper decision p3, taking into account the traffic requests
from all the hosts (s1,s2,s3), that is, honoring p5 but discard-
ing p6 and p7. AS3 can arrive at this intelligent decision p3

only if AS3 has the knowledge that p5 can be implemented
only if it is accepted at AS3 — perhaps by charging AS5 with
an extra fee, and that p6,p7 can still be satisfied even if they
are rejected at AS3.

BGP was not designed for joint policy routing as discussed
above; Source routing only improves the level of flexibility at
the sources, and multi-path routing allows multiple policies
at a single AS (e.g.,AS3), selecting different routes for each
upstream neighbor (e.g.,AS5, AS6), but neither addresses
policy making at the potential joints because policy routes
are still computed in isolation. To accommodate multiple le-
gitimate policies that are related because they rely on paths
that cross a common node, the routing system should facilitate
that common node to arrive at an “intelligent” decision that
jointly allocates routing resource — accommodating as many
legitimate policies as possible.
3 A CASE OF POLICY EXCHANGE
This section develops policy exchange which instantiates the
do-no-harm principle in § 1, and addresses the failures ana-
lyzed in § 2. In policy exchange, policies are no longer fixed
term embedded in the route computation process, rather,
they become dynamic entities that can be adjusted to fine
tune their impacts on others. To capture the “policy impacts”,
we introduce the notion of policy fragment, a portion of an
AS policy that cannot be guaranteed within the local AS. A
policy fragment codifies what makes an AS vulnerable to the
decision by others, it is thus propagated hop by hop until it
is either (accepted and) incorporated into some remote AS’s
policy decision, or is explicitly rejected. The hope is that,
by providing an exchange platform that gives individual AS
better visibility into how their local decisions affect others,
they will make better informed policies that raise flexibility
for everyone.

3.1 A Policy Exchange Protocol
Like routing information exchange, policy exchange is im-
plemented at each policy-based routing entity. Each node

APNet 2021, June 24–25, 2021, Shenzhen, China, China Bin Gui, Fangping Lan, Anduo Wang

step policy exchange p1 p2 p3 p4 p5 p6 p7
0 5→3: secure secure fast ⊤ ⊤ secure fast fast
1 6(7)→3: fast; 6(7)→4: fast secure fast secure ⊤ secure fast fast
2 3→5: secure(2); 3→6: fast(1); 3→7: fast(1) secure fast secure(2), fast(1) fast secure fast fast
3 6→3: ¬fast(1); 6→4: ¬fast(1) secure fast secure(2), fast(1) fast secure(2) fast@4, ¬fast(1)@3 fast@4, ¬fast(1)@3
4 7→3: ¬fast(1); 7→4: ¬fast(1) secure fast secure(2), fast(1) fast secure(2) fast fast@4, ¬fast(1)@3
5 secure fast secure(2) fast secure(2) fast fast

Table 1: One possible trace of policy exchange for the network in Figure 2 (right).

Algorithm 1 Policy Exchange at i

1: if ei (pi) == f alse then // pi can be enforced within i
2: for each neighbor k do
3: pki ← fk (pi); // policy fragment relevant to k
4: send pki to k ;
5: loop (wait until i receive pik from some neighbor k)
6: for each pik do
7: pi ←mi (pi ,p

i
k); // merges pik with local policy

8: if ei (pi) == f alse then
9: p

j
i ← fk (pi) for every neighbor j;

10: send p ji to j;

receives policy fragments from one or more of its directly
attached neighbors, performs a calculation, and then dis-
tributes the results of the calculation back to its neighbors:
the policy fragment specifies a service request (or a resource
restriction) placed on the receiving node by the sending
neighbor; the calculation estimates the impact of the request
(resource), the results of which represent what cannot be
realized within the receiving node — requiring support (com-
pliance) from other neighbors, and hence must be further
distributed.

Specifically, as depicted in Algorithm 1: In line 1-4, node i
initializes its policy fragments — local request (or restriction)
— that need to be exposed for realization; The fragment pki is
calculated by fk specific to each neighbor k , meaning that the
impact of the same local concern needs to be instantiated in
the context of each neighbor. In line 5-10, node i iteratively
exchanges policy fragments with all the neighbors: each
fragment received is first merged with the local policy via
mi , a merging function that adjusts i’s policy as follows:
simply combine pik and pi if the two are compatible with
each other; override pi with pik if conflict arises and i decides
to yield to neighbor k . Note that our protocol only develops a
policy exchange platform, where the specific implementation
of e, f ,m (and their semantics) is unspecified and left to the
participating ASes. We will show possible instantiations of
these functions by examples in § 3.2.
We illustrate the operation of policy exchange by revis-

iting the example in Figure 2 (right)2. One specific execu-
tion trace, among many others due to the distributed and
asynchronous nature of the policy exchange algorithm 1, is

2Due to limited space, we skip the details of the simpler example in Figure 2
(left).

summarized in Table 1: At step 0, all ASes start with their
initial policies, furthermore, AS5 sends its policy request for
a secure route to d (5→3: secure), since AS5 depends on AS3

to get to d. This causes AS3 to change its policy from un-
conditional traffic delivery (⊤) to secure delivery (secure);
Likewise, at step 1, AS6 (AS7) sends a fast route request to its
two downstream neighbors AS3,AS4: while this causes AS4 to
adopt fast traffic delivery, the resulting policy of AS3 is more
interesting, to merge the conflicting requests (secure vs. fast),
AS3 can introduce a cost tag (charging 1 unit for fast request,
and 2 unit for secure request, as a means to maximize local
revenue, denoted by secure(2), fast(1)). To realize this
charging scheme, AS3, as shown at step 2, sends the policy
fragment offering the new service (with additional cost) to
AS5,AS6,AS7, respectively. After receiving these fragments
at step 3, AS5 — with no other providers available — accepts
and changes its policy to secure(2), whereas AS6 (AS7) rejects
the new offer — it was already promised a free fast route
— and changes its policy to fast@4, ¬fast(1)@3. Finally, at
step 4, step 5, respectively, AS6,AS7 — to make sure they are
not charged — expose the policy fragment ¬fast(1) to its
downstream providers, the result is that AS3 will converge
to secure(2), a policy that can be practically enforced. All
the other nodes converge to a locally enforceable policy as
well, so the algorithm terminates.
3.2 Preliminary Result
Tp A B

r x
r y
b x l(x)<l(y)

I1 A B
r [120]
r [1340]
b [120]

I2 A B
r [1230]
r [130]
b [130]

Table 2: Tp represents shortest path policy (p), I1-2 show pos-
sible instances of best route selection.

We now sketch ongoing efforts towards building a pol-
icy exchange system. The main challenge is that a knowl-
edge representation for policies that allow policies to be
distributed, while hiding information about the internal net-
work, is not available. Prior policy aware routing schemes
(like BGP and its many alternatives) embed policies in the
protocol, relying on network-specific mechanisms to express
policies. To this end, we introduce a representation system
for policies as the key technique enabler, outline our plan
to embed the policy exchange system into the Internet rout-
ing infrastructure, and preliminary evaluation on realistic
topology.

Flexible Routing with Policy Exchange APNet 2021, June 24–25, 2021, Shenzhen, China, China

Policy exchange as knowledge exchange. We borrow
from the database community a powerful knowledge rep-
resentation system called conditional table [3], which aug-
ments a regular table (or relation) with variables and addi-
tional conditions over those variables — a tuple is presented
only when the associated condition holds. A conditional
table, depending on the evaluation of the variables and con-
ditions, corresponds to a set of concrete instances — regular
tables with different instantiations of the variables that sat-
isfy the condition. This makes conditional tables a natural
representation for routing policies if we consider a policy
one single prescription for all possible route selection out-
comes. For example, consider a routing entity 1 with two
neighbors from whom routes can be learned to a destina-
tion 0. The shortest path policy (p) of 1 can be represented
by Tp in Table 2, where Tp=A,B has two attributes: attribute
A shows whether a path is selected or not — ’r’ represents
candidate routes and ’b’ denotes best route, and attribute B

specifies the path itself. Tp contains two candidate routes as
represented by variables x and y, and one best route x if its
associated condition holds — x is shorter than y (expressed
by a function l that returns a path’s length). Observe how Tp

alone represents all possible route selection outcomes, two
such best routes selected are shown in I1 and I2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

pr
ob

ab
ili

ty

time (μs)

comp-bgp
max-bgp
comp-rf
max-rf

Figure 3: The performance
of merging m (comp and max)
on two topologies: Rocketfuel
topology (rc) and topology gen-
erated from BGP traces (bgp).

More importantly, con-
ditional table [3] can
be queried with the
usual SQL join, projec-
tion, and selection etc.
in the same way as a
regular table: This al-
lows the policy merger
(m) and fragment gen-
erator (f) in Algo-
rithm 1 to be formu-
lated in terms of these
SQL primitives. Specif-
ically, since the frag-
ment of a policy (T) are
tuples inT that, collec-
tively, fail to produce a best route, to compute the policy
fragment, we only need to select from T two types of tuples:
(1) those tuples where (A=’b’) and whose condition evaluate
to false (the negation of which is satisfiable), and (2) tuples
where A=’r’ and whose B attributes occur in those tuples
in (1); Similarly, to merge a received policy T1 with the re-
ceiver’s current policy T2, we only need to transform T1 into
T ′1 to reflect its propagation from the origin (of T1) to the
receiver, followed by the union of T ′1 and T2. Ultimately, we
hope to develop a conditional table based knowledge ex-
change system as a means to rapid development of policy
exchange.
Integration with the routing infrastructure. In the con-
text of BGP, to properly “install” the adjusted policies (output

of the policy exchange protocol) so that policies are enforced
during route selection, we only need to refactor those policies
into the usual BGP mechanisms, such as the local preference
attribute that overrides all other attributes during route selec-
tion to enforce preference, or (export) filters to restrict route
distribution. This translation can be achieved manually by a
human operator who has to configure BGP whether policy
exchange is used or not. However, with the introduction of a
formal representation system (conditional table) of routing
policies [9], we hope to develop tools that can automatically
synthesize those BGP configurations, so that human opera-
tors only have to understand policies in the conditional table,
without worrying about the tedious implementation in the
specific BGP mechanism.
Evaluation We implemented the merging functionm (Al-
gorithm 1 line 6-7) in policy exchange by two Python func-
tions comp and max: comp(p,i,t) checks whether a set of poli-
cies p received from different neighbors are compatible with
node iâĂŹs policy in topology t . If conflict arises then i uses
max(p, i, t) to maximize the total number of admissible poli-
cies in p. In the following, we present performance result
of mergingm, and leave the development of function e and
fragment generator f as future work. All experiments were
ran on a 64-bit laptop with AMD Ryzen 7 4800H CPU and
15.4G RAM.

ps 1 2 3
0.01 46.2% 50.3% 0.35%
0.05 41.4% 39.2% 19.4%
0.1 38.7% 30.5% 30.8%
0.5 29.1% 19.9% 51%

Table 3: Probability of satisfy-
ing # (1,2,3) announcements un-
der different ps

We first generate
two realistic network
topologies: (1) a Rock-
etfuel topology (AS
7018 with 11292 nodes
and 25382 edges); and
(2) a topology inferred
from the BGP update
file (extracted from the
AS paths, has 5018
nodes and 8213 links)
from the Route View collector route-views2.oregon-ix.net,
on February 1, 2021 at 00:00 PST. We then embedded in these
two topologies the 7 nodes described in Figure 2 (right) as
follows: We randomly pick 7 nodes as AS1 to AS7; AS3 is the
unique provider of AS5, it is the node at the "joint" that collects
p35 , p

3
6 and p

3
7 on destination d; p5 is secure policy — requires

at least one secure router fragments to the destination d ;
Each node in the topology is also labeled as a secure router
with probability ps ; p6 and p7 are fast policies that require
the selected route to have a length that is below average;
When p5 conflicts with p6 and p7, we assume AS3 prioritizes
p5.

Figure 3 plots the processing time of comp and max on the
BGP topology(bgp) and Rocketfuel topology(rf). As expected,
the comp and max delays are negligible, both ≤ 8µs. Table 3
shows the number of satiable policies (as computed by max)
under different ps values (1000 iterations for each ps): as the
probability of secure routers increases from .01 to .5, the

APNet 2021, June 24–25, 2021, Shenzhen, China, China Bin Gui, Fangping Lan, Anduo Wang

probability of simultaneously satisfying all three policies
increases from 0.35% to 51%. We can also see that the proba-
bility of max = 2 sharply falls from 50.3% to 19.9%, which is
faster than max = 1 (from 46.2% to 29.1%). The reason is that,
intuitively, the increase of ps means that AS1 or AS2 is more
likely to satisfy p5. This illustrates how our policy merging
function can correctly recognize a maximum subset of jointly
satisfiable policy fragments.

4 LIMITATIONS
Policy exchange does not magically remove all policy is-
sues. In particular, policy exchange does not detect (resolve)
conflicts among local policies, nor does it move policy en-
forcement to the most fitting location when scalability is
concerned.
Conflicting policies and route oscillation. It is well known
that routing policies can conflict and cause the routing sys-
tem to oscillate permanently [7, 13, 15, 17, 18, 30, 37]. For
example, three ASes connected in a circle with (clock-wise)
cyclic preferences — each AS prefers path via its clock-wise
neighbor than its direct path — have conflicting policies that
cause permanent oscillation. Policy exchange cannot address
such conflicts: the cyclic preference at each AS are perfectly
local, none of the ASes has a policy fragment to start an ex-
change. Moreover, policy exchange only improves visibility
into the concerns that cannot be addressed within an AS.
Besides, even when a policy fragment received by a routing
entity conflicts with its local policy, the receiving entity can
still ignore it. Generally, policy exchange neither detects nor
resolves conflicts among independently set policies.
Policy holes and routing scalability. Address aggrega-
tion in the CIDR routing structure, till today, remains one of
the main vehicles to scalability, but policy can punch a hole
in the aggregate and drastically drive up the routing table
size [19, 32]. For example, a more specific prefix (d1) of an
existing aggregate (d), owned by AS1, can be announced to
two different links (l1,l2). This implements a useful traffic
engineering policy at AS1 that balances traffic received at
l1,l2. At the same time, d1 will be propagated throughout
the Internet, unnecessarily creating routing entries for d1 ev-
erywhere. Policy exchange can mitigate this problem, but
only partially: Suppose AS1 sends the load balancing restric-
tion that traffic cannot exceed a threshold on each link. This
restriction, when received at some upstream AS2 that is on
all the paths to d, will be determined to be locally enforce-
able. Hence it will be kept local at AS2, and suppressed from
further populating the rest of the Internet. However, AS1may
not trust AS2, or simply lacks the incentive to start policy
exchange with AS2.
While policy exchange does not directly solve the above

problems, its building blocks — the new policy representa-
tion system, the decoupling of policy from routing — may
migrate to new solutions beyond flexible routing, and may

clarify and simplify the interaction between policy and other
components of the routing system.
5 RELATEDWORK
Policy distribution. Existing inter-domain routing schemes
often employ some forms of policy distribution: In theMIRO [38]
system, a participant can pull neighbors for alternative routes
satisfying a particular need. In Wiser [28], neighboring ASes
exchange normalized cost to jointly optimize traffic delivery
in both ASes. In BGP, restricted form of policy information
disclosure is also available with MED [31] attribute and the
community attribute [22]. More recently, a BGP extension for
policy distribution [23] that enhances community attribute
based policy tagging and negotiation was also proposed. Our
work attempts to generalize these efforts: policy exchange
systematically coordinates policies on the fly, it does not
require pre-mediated agreement, and is not restricted to a
specific scheme tailored to a particular task.
Declarative networking. In the context of database usages
in networking, we are the closest to declarative network-
ing [10, 11, 24–27, 29] which introduces network datalog —
a data query language reminiscent of SQL — as a compact
and efficient language for expressing networking such as
routing protocols and overlay networks. Our work goes be-
yond programming with factual data. To our best knowledge,
we are the first to investigate the use of indefinite data (i.e.
conditional tables) to lift policies (intentions) to first order
data that can be queried and transformed.
6 CONCLUSION
This paper made the case of policy exchange as a means to
accommodate distributed policies in the absence of a central
authority. Policy exchange instantiates a simple principle
that a policy should be permitted as long as it poses no
harm to others, realized in a way that minimizes information
disclosure. This makes policy exchange a possible solution to
the longstanding policy routing problem in the Internet. We
present a preliminary design and ongoing efforts towards a
practical policy exchange system.While making any changes
to the Internet infrastructure has proven to be extremely
difficult, we believe that a deeper understanding of the limit
of distributed policy making is needed. We also hope that,
with some luck, our knowledge powered technique enablers
may infect the design andmigrate into the fabric of the future
routing system.
Acknowledgments. This work is supported by the National
Science Foundation Award CNS-1909450.

Flexible Routing with Policy Exchange APNet 2021, June 24–25, 2021, Shenzhen, China, China

REFERENCES
[1] Policy requirements for inter Administrative Domain routing. RFC

1125, Nov. 1989.
[2] Policy routing in Internet protocols. RFC 1102, May 1989.
[3] S. Abiteboul, R. Hull, and V. Vianu, editors. Foundations of Databases:

The Logical Level. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1995.

[4] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation
and querying of sets of possible worlds. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data, SIG-
MOD âĂŹ87, page 34âĂŞ48, New York, NY, USA, 1987. Association
for Computing Machinery.

[5] S. Agarwal, Chen-Nee Chuah, and R. H. Katz. Opca: robust interdomain
policy routing and traffic control. In 2003 IEEE Conference onOpen
Architectures and Network Programming., pages 55–64, 2003.

[6] K. Argyraki and D. R. Cheriton. Loose source routing as a mechanism
for traffic policies. In Proceedings of the ACM SIGCOMM Workshop on
Future Directions in Network Architecture, FDNA âĂŹ04, page 57âĂŞ64,
New York, NY, USA, 2004. Association for Computing Machinery.

[7] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and G. Wilfong. Route
oscillations in I-BGP with route reflection. In Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’02, pages 235–247, New York,
NY, USA, 2002. ACM.

[8] H.-W. Braun. Models of policy based routing. RFC 1104, June 1989.
[9] M. Caesar and J. Rexford. Bgp routing policies in isp networks. Netwrk.

Mag. of Global Internetwkg., 19(6):5âĂŞ11, Nov. 2005.
[10] X. Chen, Z. M.Mao, and J. van derMerwe. Towards automated network

management: Network operations using dynamic views. In Proceedings
of the 2007 SIGCOMMWorkshop on Internet Network Management, INM
’07, pages 242–247, New York, NY, USA, 2007. ACM.

[11] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and T. Roscoe. Finally,
a use for componentized transport protocols. In In HotNets IV, 2005.

[12] D. Estrin and M. Steenstrup. Inter domain policy routing: Overview
of architecture and protocols. SIGCOMM Comput. Commun. Rev.,
21(1):71âĂŞ78, Jan. 1991.

[13] N. Feamster, R. Johari, and H. Balakrishnan. Implications of auton-
omy for the expressiveness of policy routing. IEEE/ACM Trans. Netw.,
15(6):1266–1279, Dec. 2007.

[14] I. Ganichev, B. Dai, P. B. Godfrey, and S. Shenker. Yamr: Yet an-
other multipath routing protocol. SIGCOMM Comput. Commun. Rev.,
40(5):13âĂŞ19, Oct. 2010.

[15] L. Gao and J. Rexford. Stable Internet routing without global coordi-
nation. In ACM SIGMETRICS, 2000.

[16] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing. In
ACM SIGCOMM, 2009.

[17] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem
and interdomain routing. IEEE Trans. on Networking, 10:232–243, 2002.

[18] T. G. Griffin and G. Wilfong. An analysis of BGP convergence proper-
ties. In SIGCOMM, 1999.

[19] G. Huston. Commentary on Inter-Domain Routing in the Internet.
RFC 3221, Dec. 2001.

[20] T. Imieliundefinedski and W. Lipski. Incomplete information in rela-
tional databases. J. ACM, 31(4):761âĂŞ791, Sept. 1984.

[21] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A. Gandhi. Ba-
nanas: An evolutionary framework for explicit and multipath routing
in the internet. In Proceedings of the ACM SIGCOMM Workshop on Fu-
ture Directions in Network Architecture, FDNA âĂŹ03, page 277âĂŞ288,
New York, NY, USA, 2003. Association for Computing Machinery.

[22] T. Li, R. Chandra, and P. S. Traina. BGP Communities Attribute. RFC
1997, Aug. 1996.

[23] Z. Li, L. Ou, Y. Luo, S. Lu, H. Chen, S. Zhuang, and H. Wang. BGP
Extensions for Routing Policy Distribution (RPD). Internet-Draft draft-
ietf-idr-rpd-05, Internet Engineering Task Force, June 2020. Work in

Progress.
[24] C. Liu, B. T. Loo, and Y. Mao. Declarative automated cloud resource

orchestration. In Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 26:1–26:8, New York, NY, USA, 2011.
ACM.

[25] C. Liu, L. Ren, B. T. Loo, Y. Mao, and P. Basu. Cologne: A declara-
tive distributed constraint optimization platform. Proc. VLDB Endow.,
5(8):752–763, Apr. 2012.

[26] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Mani-
atis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking:
Language, execution and optimization. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’06, pages 97–108, New York, NY, USA, 2006. ACM.

[27] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
routing: Extensible routing with declarative queries. SIGCOMM ’05.
ACM, 2005.

[28] R. Mahajan, D. Wetherall, and T. Anderson. Mutually controlled rout-
ing with independent ISPs. In NSDI, 2007.

[29] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. Mosaic: Unified declarative
platform for dynamic overlay composition. In Proceedings of the 2008
ACM CoNEXT Conference, CoNEXT ’08, pages 5:1–5:12, New York, NY,
USA, 2008. ACM.

[30] D. McPherson, V. Gill, D. Walton, and A. Retana. Border Gateway
Protocol (BGP) persistent route oscillation condition. RFC 3345, 2002.

[31] D. R. McPherson and V. Gill. BGP MULTI_EXIT_DISC (MED) Consid-
erations. RFC 4451, Mar. 2006.

[32] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig. In-
terdomain traffic engineering with bgp. Comm. Mag., 41(5):122–128,
May 2003.

[33] Y. Rekhter, S. Hotz, and D. D. Estrin. A Unified Approach to Inter-
Domain Routing. RFC 1322, May 1992.

[34] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, RFC Editor, 2006.

[35] A. Seehra, J. Naous, M. Walfish, D. MaziÃĺres, A. Nicolosi, and
S. Shenker. A policy framework for the future internet. In In Proc.
HotNets, 2009.

[36] M. E. Steenstrup. An Architecture for Inter-Domain Policy Routing.
RFC 1478, June 1993.

[37] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations
in inter-domain routing. Computer Networks, 32(1):1 – 16, 2000.

[38] W. Xu and J. Rexford. MIRO: Multi-path interdomain routing. In ACM
SIGCOMM, 2006.

[39] X. Yang, D. Clark, and A. W. Berger. Nira: a new inter-domain routing
architecture. IEEE/ACM Trans. Netw., 15(4), 2007.

[40] D. Zhu, M. Gritter, and D. R. Cheriton. Feedback based routing. SIG-
COMM Comput. Commun. Rev., 33(1):71âĂŞ76, Jan. 2003.

	Abstract
	1 Introduction
	2 A Simple Principle (Explained) by Failures
	3 A Case of Policy Exchange
	3.1 A Policy Exchange Protocol
	3.2 Preliminary Result

	4 Limitations
	5 Related Work
	6 Conclusion
	References

