
A Logical Approach to Representing and Reasoning
About Interdomain Routing Policies

Anduo Wang and Zhijia Chen

Temple University

Abstract. The Internet paths connecting independently operated networks, also
called domains or autonomous systems (ASes), are driven by semantically rich
policies: the interdomain routing protocol that computes the Internet paths allows
the ASes to influence path selection with their local policies, such as economic
concerns or operational constraints. An AS can promote a policy compliant but
globally longer path by carefully tweaking lower level path attributes that are
used in the routing protocol. Such operational policies are notoriously complex
and hard to understand. This paper takes a step back and asks whether a more
principled logical approach can lead to AS policies that are easier to under-
stand, reuse, evolve, and coexist. To this end, we propose to represent policies by
database integrity constraints, in the form of headless datalog rules about what
are the acceptable Internet paths. The simple datalog expression unifies a wide
spectrum of AS policies, ranging from classic examples seen in today’s routing
practice to futuristic ones proposed in various extensions to Internet routing. More
importantly, by leveraging datalog’s connection to the theorem proving technique
called the residue method, we developed a new technique for understanding the
interactions among the policies — whether a policy can inadvertly affect another,
and how to resolve the conflict. We also evaluated our logical policies, show-
ing promising result with small overhead for conflict resolution on realistic large
networks.

1 Introduction

The Internet today is more than connecting remote hosts with valid paths. Rather, it is
a unique artifact connecting independently operated networks 1, also called domains or
autonomous systems (ASes), with rich AS-set policies [1]. Each AS needs to realize
specific objectives driven by its own concerns on economics, performance, security and
more, by configuring policies within its network to influence the overall route (a route is
simply a path that carries end to end traffic) selection. To support such policies, border
gateway protocol (BGP) [13], the de facto and the only interdomain routing protocol
that establishes paths on the global Internet introduces various route attributes that can
be set and compared to alter route selection. Over the years, the BGP route attributes
have enlarged into an ordered list which implicitly coordinates network objectives by
the ordering of the attributes [1, 26]; and new extensions to BGP are proposed to enable
more flexible policies [18, 20, 12].

1 In this paper, we use networks to refer to the networks under a single administrative domain
that interconnected to form the global Internet.

Alongside the growing support for more flexible AS policies, the policy expression
in terms of the route attributes remains largely ad hoc — the choice and use of the
attributes are often arbitrary. For example, the AS Path (ASP) attribute — a list of ASes
(each identified by a number) along the AS-level path — can implement the shortest
path policy: when a route is first imported, the network attaches its own AS number to
the AS Path, selects a best route with the shortest ASP, and exports to its neighbors this
best route. However, a network can arbitrarily increase the length of ASP by appending
its AS number multiple times to make a longer path more preferable. An alternative to
achieve the same affect is to leverage the Local Preference (LP) attribute which is
compared first in route selection and thus overrides ASP: a network can promote the use
of a longer path by assigning to it a higher LP. But LP is highly abused: many policies
of disparate policies translate to LP only because it outweighs everything else.

Besides, a network is often influenced by many policies — separate teams within
the network may issue policies addressing disparate aspects of the network, neighbor-
ing networks might also exercise policies that attempt to influence its route selection.
These policies can interact in complex ways and run into subtle conflicts. The onus of
combining them into a coherent route selection policy is left to the network admin who
is required to carefully examine every component policy as well as their joint intent.
For example, a security policy for avoiding a suspicious neighbor and an optimization
policy for reducing route cost, though concerning distinct aspects of the network, can
conflict due to the underlying topology: a router that connects a low-cost internal path
(within the local network) to the suspicious neighbor can correlate the two policies with
distinct purposes. In the presence of such conflicts, the admin must carefully re-factor
and/or reset the corresponding policy attributes that are used in the prefixed BGP pro-
tocol.

Indeed, it is generally agreed that the policy practice of the Internet today, tightly
coupled with the BGP protocol, is indirect and hard to understand. This paper takes a
step back and asks whether a more principled logical approach can lead to policies that
are easier to understand, reuse, combine, and evolve?

To this end, we investigate the use of database integrity constraints (ICs) — in the
form of headless datalog rules about what are the preferable paths — for managing rout-
ing policies. The key idea is that, rather than treating policy making and route decision
as a procedure that maps a set of incoming routes to one single best (outgoing) route,
we view policies as logical constraints that prune the candidate routes until only the
best route is left 2. To validate its feasibility, we study the expressiveness and overhead
of the IC representation with extensive case studies and experiments. More importantly,
we show the benefits of this logical approach by a new conflict detection and resolution
technique via the theorem proving technique called the residue method. Overall, we
believe this is a first step towards a more principled approach to interdomain routing
policies with automated reasoning support.

Specifically, this paper makes the following contributions:

2 Or break tie by randomly select one route from a set of equally good routes

• We introduce database ICs as a logical representation for routing policies. Through
extensive examples ranging from classic network policies to futuristic ones, we
show how the IC representation unifies many disparate policies.

• We leverage and extend the residue method to study interactions and conflicts
among policy ICs: we present a formal characterization of policy conflicts in terms
of the notion of policy residue, a fragment of a policy that anticipates its impact
on the other policies. To our best knowledge, this is the first formal attempt to
characterize multiple routing policies that jointly control the same path. Our for-
malization is logically checkable and enables conflict detection. It also offers a
method of conflict resolution with rewrites — when augmented with the residue,
a potentially conflicting policy is semantically constrained and resolves conflict.

• We study the performance overhead of the proposed logical policies by evaluating
a prototype of the residue method. Our result is promising, the conflict resolution
delay is < 100ms for large policies.

2 A unifying logical representation

This section develops a logical representation that attempts to unify a wide range of
policies previously buried in disparate route attributes. More importantly, the represen-
tation will enable automated reasoning as a means to understand and combine policies,
laying a firm foundation for automated conflict resolution 4.

2.1 A deductive database abstraction

We propose to represent network policies as database integrity constraints (ICs). We
draw on the insight that viewing the network state as factual data — database tables
and views — allows us to capture network policies as non-factual data — semantic
information or ICs about what are the acceptable data.

Network state as relations and rules
A factual network state is a finite set of ground facts, denoted by I . We can also de-

rive new information from the network state by rules, denoted by R. The complete net-
work state is denoted by N = R∪ I . Suppose N always includes ground facts from the
two route relations ri/3, ro/3, both of which have three attributes destination, next hop
and path vector. ri(x, y, z) stands for an incoming route learned from a neighbor y to
reach a destination x by a path z (the list of ASes along the path to x). ro stands for the
output route selected by the network’s routing policy.

For example, a network state that has 3 incoming routes and 2 outgoing routes is
represented by the ground rules I1−5, the derived information of all available paths to a
particular destination 1.2.3.4 is represented by the rule R1.

Network facts
I1: ri(1.2.3.4, router1, [AS2,AS3,AS5]) :-
I2: ri(1.2.3.4, router2, [AS2,AS4,AS5]) :-
I3: ri(1.2.3.5, router1, [AS3,AS5]) :-

I4: ro(1.2.3.4, router2, [AS2,AS4,AS5]) :-
I5: ro(1.2.3.5, router1, [AS4,AS5]) :-
Derived path information
R1: rpath(z) :- ri(x,y,z), x=1.2.3.4.

Policies as integrity constraints (ICs)
A routing policy is a finite set of ICs, denoted by P . We divide the policy ICs

into two categories: the generative ICs whose head is non-empty, and denial ICs whose
head is empty. In particular, a denial IC can be read as a body condition — conjunction
of literals that cannot be simultaneously true — that must be avoided for any correct
network state; a generative IC can be read as a head condition that must also hold if
the network state is consistent with the body condition. A basic requirement for any
routing system is path validity — any selected outgoing route must also correspond
to some incoming route. A network cannot invent a route that does not belong to it.
This can be captured by a path validity policy encoded by the generative IC Pvalidity,
equivalently, it can be formulated as the denial IC Pvalidity′ .

Path validity policy
ICvalidity: ri(x,y,z) :- ro(x,y,z).
ICvalidity’: :- ro(x,y,z), ¬ri(x,y,z).

2.2 Examples

In this section, we use more examples to illustrate the expressiveness of the IC repre-
sentation.

Non-aggregate Policies
Many policies can be specified as constraints over a single path. For example, a

source host might want to specify the explicit path (a) for carrying traffic to certain
destination (d), to better control end to end performance, as expressed by the simple
and direct ICcp.

Complete path policy
ICcp: z=a :- ro(x,y,z), x=d.

Another popular policy regulates route selection based on the business relations of
the neighboring networks. A network often engages in one of three business relations
with its neighbors [16]: being a customer if it pays the neighbor to get to the rest of the
Internet, being a provider if it charges its neighbor and provides Internet access, or being
a peer if it exchanges traffic with its neighbor for free. To maximize revenue and mini-
mize cost, it is common practice — formulated by the Gao-Rexford Guideline (GR) —
for a network to prioritize (select) routes from the customer / peers over those from the
provider. With the help of three auxiliary relations customer/1, provider/1, peer/1
that specify the source of a path — e.g.,peer(x) states x is a peer path learned from a
peer — the Gao-Rexford policy guideline easily translates to the ICGR1,GR2.

Gao-Rexford Policy Guideline
ICGR1 :- ro(x,y,z),ri(x,y’,z’),provider(z),customer(z’).
ICGR2 :- ro(x,y,z),ri(x,y’,z’),provider(z),peer(z’).

ICGR1−GR2 prevents the selection of a provider path when there exists a customer
or peer path, respectively. Note that the operational expression of the Gao-Rexford pol-
icy in traditional BGP is a classic use case of the local preference (LP) attribute:
the network needs to always attach a higher LP to the customer / peer paths as compared
to the provider paths. In comparison, our declarative policy is not only more direct —
we do not need to coordinate the LP attribute assignment, it is also inherently more
flexible. When bound to LP, Gao-Rexford will override any other policies as LP over-
rides all the rest of the attributes. For example, it will be hard to add a security policy
even though it might carry more weight than the economic concerns. In contrast, the
declarative policy allows us to add new policy and freely combine it with the existing
ones with automated conflict detection and resolution (more in §4).

Our logical approach also easily captures futuristic BGP policies introduced in ex-
perimental BGP extensions. For example, MIRO [27] is an extension that allows a net-
work to negotiate path with a neighbor. A common use of MIRO is to find securer path
where a network sends its neighbor request to bypass certain suspicious network (say
b). With the help of the auxiliary relation waypoint(path, network), such negotiation
request can take the form of ICMIRO.

ICMIRO :- ro(x,y,z), waypoint(z,b).

Aggregate Policies
The foregoing examples are all non-aggregate policies in the sense that they are

expressible as constraints along a single route. Next, we illustrate how to formulate
aggregate policies concerning a group of routes without the explicit use of an aggregate
term. First, consider the shortest path policy. Among all candidate paths connecting a
pair of source and destination, shortest path policy picks a path that traverses the fewest
number of networks. With the help of an auxiliary function l(path) which returns the
length (number of ASes along the path) of the path, shortest path policy translates to
ICsp.

Shortest path
ICsp :- ro(x,y,z), ri(x,y’,z’), l(z)>l(z’).

Now consider a complex futuristic policy with aggregation. Wiser [12] is an ex-
tension to BGP that performs traffic engineering to jointly minimize cost between two
neighboring networks. A Wiser network uses the (normalized) path costs advertised by
a neighbor to join with its own (also normalized) local path — of course, the two path
fragments must connect at a common border router — and selects a best path that has the
lowest overall cost. With two auxiliary relations Advertised(next hop,cost) and
Local(destination, next hop,cost), the Wiser policy translates to ICWiser.

Wiser policy
RWiser: j(x,y,z) :- Local(x,y,z1), Advertised(y,z2), z=z1+z2.
ICWiser: :- ro(x,y,z), j(x,y,w), j(x,y’,w’), w>w’.

where the RWiser rule derives the joint cost of two path fragments and ICWiser

forbids the selection of a route when there exists a better alternative (w>w’).

3 The Residue Method

An advantage of the IC representation is that it facilitates automated reasoning of the
policies — predicating the interactions of multiple policies that jointly select paths. The
key idea is to leverage the residue method [2] for semantic transformation, a process in
which all the useful information in an IC is extracted and fully processed. Essentially,
with the standard theorem proving technique called partial subsumption, we can an-
ticipate the “impact” of a policy IC on another policy — a fragment of that IC called
residue, which is then included in the second policy to eliminate any potential con-
flict. Notably, we extended the classic notion of partial subsumption with arithmetic
and comparison, both of which are critical to routing policies.

Partial Subsumption
Given two policies C1, C2 of the form A1 :- B1 ∧ B′1 and A2 :- B2 ∧ B′2, respec-

tively, where B1, B2 are conjunctions of relational literals and B′1, B
′
2 are conjunctions

of comparison and arithmetic formulas, C1 subsumes C2 if there exists (1) a solver
S for arithmetics and comparison, and (2) a substitution σ such that each literal in
(A1 :- B1)σ occurs in A2 :- B2 and ¬B′2 ∧ B′1σ can be reduced to False by S. Intu-
itively, subsumption means policy C1 is more general — stronger — than C2, that is,
any network state compliant with C1 is guaranteed to be compliant with C2.

For example, consider the IC clauses IC1, IC2:
IC1: :- ro(x,y,z), l(z)<5.

IC2: :- ro(u,v,w), l(w)<3, w=[AS2,AS3].

IC1 subsumes IC2 with respect to a solver that is capable of arithmetic comparison be-
cause: (1) There is a substitution σ = {x = u, y = v, z = w that makes :- ro(x,y,z)

a subclause of :- ro(u,v,w), l(w)<3 and (2) ¬((l(z) < 5)σ) ∧ (l(w) < 3) can be
reduced to l(w) > 5 ∧ l(w) < 3 which is False.

What interests us is partial subsumption: C1 partially subsumes C2 if there exists
a subclause of C1 that subsumes C2. Partial subsumption means the subsuming policy
has a non-trivial impact on the policy being subsumed. To precisely capture such impact
and to anticipate how such impact modifies another policy, we leverage the notion of
residue.

Residue
A residue is a fragment of a subsuming IC that actually interacts with the subsumed

IC. Residue can be obtained by the subsumption algorithm developed in [3]. The sub-
sumption algorithm tries to construct a refutation tree with the subsuming policy as
the root, and uses elements from the subsumed policy for resolution. Figure 1 shows
the refutation trees for ICcp and IC2, IC3 and IC2, respectively. ICcp and IC3 are the
subsuming clause and IC2 is the subsumed clause. At the bottom of each refutation tree

where no resolutions or reduction (by the comparison-arithmetic solver) is possible, a
fragment of the subsuming clause is left.

:- ro(u,v,w)z=a :- ro(x,y,z), x=d

w=a :- u=d

ICcp elements of IC2

{x=u,y=v,x=w}

:- ro(u,v,w):- ro(x,y,z), l(z)<5.

:- l(w)<5 :-l(w)<3

null

IC3 elements of IC2

{x=u,y=v,x=w}

l(w)>5 ∧ l(w)<3
reduces to False

Fig. 1: Refutation tree: the residue (in red) at the bottom shows the impact of IC policy on route
selection.

The residue precisely anticipates the policy “impact”. The “null” residue on the left
shows that IC3 is stronger than IC2 (more details in § 4); on the other hand, the non-
trivial residue w=a :- u=d (right in the Figure) states that the condition w = a ←
u = d must be taken into account when applying IC2: any route to d must take a as the
selected path.

Semantic transformation via residue annotation
In general, a non-trivial residue obtained on a subsuming policy C1 and a subsumed

policy C2 states a condition that must be satisfied for C2 to be consistent with C1. This
observation allows us to use the residue of C1 to semantically constrain (transform) C2.
We only need to attach the residue condition to the body of C2. The result is a new
policy C ′2 that is guaranteed to be compliant with C1. For example, Annotating IC2

with the residue of ICcp produces:

IC2 semantically constrained by Ccp:
:- ri(u,v,w),l(w)<3,w=[AS2,AS3],w = a← u = d.

4 Merging Policies

This section developed a residue based method to understand the interactions between
policy ICs 3. Specifically, using the notions of (partial) subsumption and residue, we
give a formal characterization the relations among two policies. We also give a resolu-
tion method that automatically merges potentially conflicting policies.

4.1 Policy conflicts
First, we introduce a formal concept called covering to denote when a policy is stronger
than another. One policy covers another if it subsumes the second policy. Intuitively, one
policy is stronger if compliance with the first policy implies compliance with the sec-
ond. For example, Consider a more specific form of shortest path policy that only finds

shortest path to certain destinations, with a new relation only(destinations) standing
for those destinations. We express this restricted shortest path policy by ICspr as fol-
lows
ICspr :- ro(x,y,z), ri(x,y’,z’), l(z)>l(z’), only(x).

The shortest path policy ICsp subsumes ICspr, thus it covers the more specific policy.
Intuitively, all the shortest paths must also include the shortest path to those particular
destinations.

What is more interesting is partial covering: one policy partially covers another if a
subclause of the first policy covers the second. Partial covering signals conflicts — two
policies overlap but neither one of them is redundant. Consider two pairs of policies —
shortest path and complete path, MIRO and Wiser (in § 2). For each pair, the policies
are conflicting with each other. It is straightforward to spot conflicts between simple
policies like shortest path and complete path, but the conflicts between MIRO and Wiser
is subtler. The formal characterization of conflicts via residue reasoning helps to guard
against missing a subtle conflict.

4.2 Resolution
Conflict resolution in the Internet today is manual and operational: the network admin
must understand the combined effort of all policies and refactor them into a hard wired
list of route attributes that will be compared in a fixed order during the route selection
process. In contrast, in this paper, we propose a facility that, takes a set of conflicting
policies as input, generates a new coherent set by the semantic transformation process
with the residue method. Between any pair of conflicting policies, the residue method
rewrites the policy with lower priority, semantically constraining it with the other one
with higher priority. Thus, the resolution facility automatically resolves conflicts by
policy rewriting, freeing the admins from manual policy coordination.

Specifically, for two policies ICi, ICj , we use ICj |ICi
, to denote the semantically

restricted version of ICj with respect to ICi, which is obtained by augmenting ICj

with the residue of ICi. When ICi enjoys higher priority over ICj — ICi is perceived
more important, we can simply keep ICi unchanged but compute ICj |ICi to rewrite
ICj to the restricted form, forcing ICj to also account for the concerns of ICi. Note
that, by definition, ICi covers ICj . The resulting pair (ICi, ICj |ICi

) can be viewed as
a ranked list of policies where ICi takes effect first, and the original ICj follows.

For example, consider the complete path (ICcp) and shortest path (ICsp) policies.
To obtain a shortest path policy that finds shortest path to all destinations except d,
the path to which is pre-defined to be a, we can apply the residue method to obtain
ICsp|ICcp

(the residue augmented in red):
:- ro(x,y,z), ri(x,y’,z’), l(z)>l(z’), ¬(x = d ∧ z 6= a).

Thus, we obtained a shortest path policy that yields to the specific path assignment of
the complete path policy.

Similarly, consider the MIRO (ICMIRO) and Wiser (ICWiser) policies. A network
that deploys both but prioritizes the MIRO policy — security concern over perfor-
mance — can apply our resolution method to obtain the MIRO constrained Wiser policy
ICWiser|ICMIRO

:
:- ro(x,y,z), j(x,y,w), j(x,y’,w’), w>w’, ¬waypoint(z,b).
With ICWiser|ICMIRO

, the Wiser portion (first 4 literals) will take effect only when the

MIRO residue evaluates to true (when MIRO policy is honored). That is, performance
concern kicks in only after security requirement is satisfied.

5 Preliminary evaluation

We evaluate the performance of our proposed logical policies in Ravel [24], a database-
defined network that uses the Postgres database as the network controller, which is
particularly convenient for our experiment. All experiments were performed on the ma-
cOS platform with a 3.4 GHz Intel Core i5 processor and 16 GB 2400 MHz DDR4
RAM.

To measure the overhead of the residue method, we implemented a prototype of
the subsumption algorithm based residue generation in Python: for a given subsuming
clause (denoted by P1, hasM literals) and a clause being subsumed (denoted by P2, has
N literals), we loop over all the subclauses of P1 and test if the subclause subsumes P2.
We applied the standard θ-subsumption algorithm to implement the subsumption test,
which has complexity O

(
Nk

)
as we need to map each literal of the subclause (ranging

from 1 to k for a subclause with k literals) to a literal in P2 (ranging from 1 to N) [17].
The overall complexity of the residue generator is O

(
M

M
2 NM

)
, where the term M

M
2

is a coarse upper bound for binomial coefficients.
We evaluated the performance of our residue generator with MIRO and Wiser poli-

cies. To test its scalability, we increased the number of waypoint literals in MIRO policy
with randomly generated networks (to avoid).

 0.1

 1

 10

 100

(2,4) (2,16) (2,64) (2,2) (4,2) (8,2)

de
la
y
(m
s)

(size of MIRO policy 1, size of MIRO policy 2)

0.364
0.986

3.356

0.268

1.429

37.102

Fig. 2: Residue generation for MIRO policies.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.266 0.705 10.524

C
D
F

delay (ms)

M=2
M=4
M=8

Fig. 3: Residue generation for Wiser and
MIRO.

Figure 2 shows the residue generator processing delay (y axis, log scaled) for two
MIRO policies with different size combinations (as indicated by the tuple below the x
axis). For each combination, we plotted the average delay of 500 runs. The small bar
on the top of each box indicates the standard variation. The left three boxes with grey
filling show the growing trend of delay with respect to N — M is fixed at 2; and the
right three boxes with grids filling show the growing trend with respect to M — N is
fixed at 2. When M is fixed, the residue generator scales better — even for P2 having
very large size of 64, it finishes in 3.356 ms on average. The delay, however, increases

exponentially with M — the delay grows from 0.268ms to 37.102ms when M increase
from 2 to 8.

Figure 3 presents the CDF of the residue generator processing delays (x axis, log
scaled) for constraining MIRO policy with a Wiser policy — The Wiser policy has 6
literals (N = 6), and the MIRO policy has (M) has varied size of 2, 4 and 8. For all
three sizes, 99% of all the processing finished within 0.266ms, 0.705ms and 10.524ms
respectively. Note that the performance here is better than that of Figure 2 — for exam-
ple, the average delay is less than 10ms for M = 8 and N = 6 compared to the average
delay of 37.10ms for M = 8 and N = 2. This is because the MIRO policy shares only
one common predicate with the Wiser policy, i.e., the relation ro, which led to a faster
result from subsumption test.

6 Related Work

Declarative networking.
Closest to our IC representation of routing policies is declarative networking [10, 9,

8, 7, 22, 21, 23] that also uses a database abstraction for specifying networks. But declar-
ative networking focus on the factual network states. Network policies, as admitted by
the authors, are still operational — they are merely logical modifiers that regulate (and
are part of) the network operations to produce the policy-compliant outcome. Besides, it
relies on the programmer for policy composition: programmers must clearly understand
every piece of policy, as well anticipate their interactions and conflicts, and manually
rewrite the program for policy transformation. Thus, declarative networking provides a
(albeit declarative) platform for programming network states with embedded policies.

BGP policy extensions.
Many proposals [5, 27, 11, 28, 12, 25, 6, 19] were made in the past to enable more

flexible routing policies. While these proposals often consider compatibility with the
legacy BGP system, they do not provide any support for joint route decision among
themselves. It is still the responsibility of the admin to come up with a monolithic coher-
ent policy. The only work we are aware of that considers the co-existence of many BGP
extensions is D-BGP [15, 14]. D-BGP studied architectural features needed to accom-
modate multiple interdomain protocols to be partially deployed across non-continuous
domains called islands. Still, within an island, only one monolithic policy pertaining
to a particular protocol can be deployed. To our best knowledge, our work is the first
systematic attempt to facilitate multiple extensions to jointly affect routing within a
network (island).

7 Conclusion

In this paper, we developed a logical approach to Internet routing policies. Rather than
burying policies in the route attributes that are manipulated by the prefixed BGP proto-
col, and relying on the network admin for manual configuration, we introduce database
integrity constraints (ICs) [4, 2, 3] — logical statements about what are the preferable
routes — as a unifying abstraction for representing and reasoning about routing poli-
cies, and extend the standard subsumption algorithm to reason about the policies —

allowing automatic detection and resolution of conflicts. With extensive example poli-
cies and promising evaluation result of policy resolution, we believe a logical approach
can make routing policies more direct, simpler and predictable.

References

1. CAESAR, M., AND REXFORD, J. Bgp routing policies in isp networks. Netwrk. Mag. of
Global Internetwkg. 19, 6 (Nov. 2005), 5–11.

2. CHAKRAVARTHY, U. S., GRANT, J., AND MINKER, J. Logic-based approach to semantic
query optimization. ACM Trans. Database Syst. 15, 2 (June 1990), 162–207.

3. CHANG, C.-L., AND LEE, R. C.-T. Symbolic Logic and Mechanical Theorem Proving,
1st ed. Academic Press, Inc., Orlando, FL, USA, 1997.

4. GODFREY, P., GRANT, J., GRYZ, J., AND MINKER, J. Integrity constraints: Semantics and
applications. In Logics for Databases and Information Systems (the book grow out of the
Dagstuhl Seminar 9529: Role of Logics in Information Systems, 1995) (1998), pp. 265–306.

5. GODFREY, P. B., GANICHEV, I., SHENKER, S., AND STOICA, I. Pathlet routing. In ACM
SIGCOMM (2009).

6. GRIFFIN, T. G., JAGGARD, A. D., AND RAMACHANDRAN, V. Design principles of policy
languages for path vector protocols. In Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (New York, NY,
USA, 2003), SIGCOMM ’03, ACM, pp. 61–72.

7. HINRICHS, T. L., GUDE, N. S., CASADO, M., MITCHELL, J. C., AND SHENKER, S. Fml:
Practical declarative network management. In Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking (New York, NY, USA, 2009), WREN ’09, ACM, pp. 1–
10.

8. LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E., HELLERSTEIN, J. M., MA-
NIATIS, P., RAMAKRISHNAN, R., ROSCOE, T., AND STOICA, I. Declarative networking:
Language, execution and optimization. In Proceedings of the 2006 ACM SIGMOD Inter-
national Conference on Management of Data (New York, NY, USA, 2006), SIGMOD ’06,
ACM, pp. 97–108.

9. LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P., ROSCOE, T., AND STOICA,
I. Implementing declarative overlays. In Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles (New York, NY, USA, 2005), SOSP ’05, ACM, pp. 75–90.

10. LOO, B. T., HELLERSTEIN, J. M., STOICA, I., AND RAMAKRISHNAN, R. Declarative
routing: Extensible routing with declarative queries. In Proceedings of the 2005 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications
(New York, NY, USA, 2005), SIGCOMM ’05, ACM, pp. 289–300.

11. MAHAJAN, R., WETHERALL, D., AND ANDERSON, T. Negotiation-based routing between
neighboring isps. In NSDI (2005).

12. MAHAJAN, R., WETHERALL, D., AND ANDERSON, T. Mutually controlled routing with
independent ISPs. In NSDI (2007).

13. REKHTER., Y., LI., T., AND HARES., S. A Border Gateway Protocol 4 (BGP-4).
14. SAMBASIVAN, R. R., TRAN-LAM, D., AKELLA, A., AND STEENKISTE, P. Bootstrapping

evolvability for inter-domain routing. In Proceedings of the 14th ACM Workshop on Hot
Topics in Networks (New York, NY, USA, 2015), HotNets-XIV, ACM, pp. 12:1–12:7.

15. SAMBASIVAN, R. R., TRAN-LAM, D., AKELLA, A., AND STEENKISTE, P. Bootstrap-
ping evolvability for inter-domain routing with d-bgp. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (New York, NY, USA, 2017),
SIGCOMM ’17, ACM, pp. 474–487.

16. SAMI, R., SCHAPIRA, M., AND ZOHAR, A. Searching for stability in interdomain routing.
In IEEE INFOCOM (2009).

17. SANTOS, J., AND MUGGLETON, S. Subsumer: A Prolog theta-subsumption engine. In
Technical Communications of the 26th International Conference on Logic Programming
(Dagstuhl, Germany, 2010), M. Hermenegildo and T. Schaub, Eds., vol. 7 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, pp. 172–181.

18. SCHAPIRA, M., ZHU, Y., AND REXFORD, J. Putting BGP on the right path: A case for
next-hop routing. In ACM SIGCOMM HotNets (Oct. 2010).

19. SUBRAMANIAN, L., CAESAR, M., EE, C. T., HANDLEY, M., MAO, M., SHENKER, S.,
AND STOICA, I. Hlp: A next generation inter-domain routing protocol. In Proceedings of the
2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (New York, NY, USA, 2005), SIGCOMM ’05, ACM, pp. 13–24.

20. SUBRAMANIAN, L., CAESAR, M., EE, C. T., HANDLEY, M., MAO, M., SHENKER, S.,
AND STOICA, I. HLP: A next-generation interdomain routing protocol. In SIGCOMM
(2005).

21. WANG, A., BASU, P., LOO, B. T., AND SOKOLSKY, O. Declarative Network Verification.
In PADL (2009).

22. WANG, A., JIA, L., LIU, C., LOO, B. T., SOKOLSKY, O., AND BASU, P. Formally Verifi-
able Networking.

23. WANG, A., JIA, L., ZHOU, W., REN, Y., LOO, B. T., REXFORD, J., NIGAM, V., SCE-
DROV, A., AND TALCOTT, C. FSR: Formal Analysis and Implementation Toolkit for Safe
Inter-domain Routing. IEEE/ACM Transactions on Networking (2012).

24. WANG, A., MEI, X., CROFT, J., CAESAR, M., AND GODFREY, B. Ravel: A database-
defined network. In SOSR (2016).

25. WANG, Y., AVRAMOPOULOS, I., AND REXFORD, J. Design for configurability: Rethinking
interdomain routing policies from the ground up. IEEE J.Sel. A. Commun. 27, 3 (Apr. 2009),
336–348.

26. WANG, Y., AVRAMOPOULOS, I. C., AND REXFORD, J. Design for configurability: re-
thinking interdomain routing policies from the ground up. IEEE Journal on Selected Areas
in Communications 27, 3 (2009), 336–348.

27. XU, W., AND REXFORD, J. MIRO: Multi-path interdomain routing. In ACM SIGCOMM
(2006).

28. YANG, X., CLARK, D., AND BERGER, A. W. Nira: a new inter-domain routing architecture.
IEEE/ACM Trans. Netw. 15, 4 (2007).

