
A Logical Approach to
Representing and Reasoning About

Interdomain Routing Policies

Anduo Wang and Zhijia Chen
Temple University

Datalog 2.0 2019

host

host

host

independently
operated networks,
also called domains

the Internet
a loose federation of networks, each acting in their
own self interests — utilization, performance …

1

host

host

host

interdomain routing
determine a sequence of domains and routers a packet
will traverse in passing from the source to the destination

source

host

destination

packet

11

host

host

host

interdomain routing
determine a sequence of domains and routers a packet
will traverse in passing from the source to the destination

source

host

destination

packet

rechability info
(route)

1

host

host

host

interdomain routing

traffic

route

route

route selectionroute routes

one best route is selected out
of all available routes based on
some measure of the route

routes

routes

1

routes

host

host

host

interdomain routing

traffic

route

route

route selectionroute routes

one best route is selected out
of all available routes based on
some measure of the route —
governed by each domain’s
local policyroutes

1

maintains inter-domain
connectivity — “shortest
path” to any destination — as
modulated by traffic policies
(AS requirements)

host

host

host

traffic

route

route selection
based on policy

metrics

policy
carrying

 route

policy
carrying
routes

policy routing

2

host

host

host

traffic

route

route selection
based on policy

metrics

policy
carrying

 route

policy
carrying
routes

today’s Internet — policy driven
BGP (version 4) — border
gateway protocol, the de-facto
interdomain routing protocol
— introduces policy metrics
- AS-PATH (BGP2)
- NEXT-HOP (BGP3)
- LOCAL-PREF (BGP4)

best route selection by
comparing ordered

list of policy attributes

2

host

host

host

traffic

route

route selection
based on policy

metrics

policy
carrying

 route

policy
carrying
routes

5

today’s routing policies — buried in BGP

BGP — border gateway
protocol, the de-facto
interdomain routing protocol
- AS-PATH (BGP2)
- NEXT-HOP (BGP3)
- LOCAL-PREF (BGP4)

best route selection by
comparing ordered

list of policy attributes

2

“coax” BGP routes — tuning announcements and
policy metrics — into satisfying the routing policies

host

host

host

traffic

route

route selection
based on policy

metrics

policy
carrying

 route

policy
carrying
routes

5

today’s routing policies — operational

BGP — border gateway
protocol, the de-facto
interdomain routing protocol
- AS-PATH (BGP2)
- NEXT-HOP (BGP3)
- LOCAL-PREF (BGP4)

best route selection by
comparing ordered

list of policy attributes

- representation — policies buried in policy metrics
are indirect and low level

-coordination — policies refactored into prefixed
ordered path metrics are manual and error-prone

2

this talk

can we take a more principled logical approach
towards routing policies, making policies easier to

understand and combine

3

a declarative approach
a unifying representation
-policies as data integrity constraints

enabling automated coordination
-reasoning about policy interactions

3

a unifying representation
explicit data abstraction, unifying a wide range of
policies previously buried in the routing protocol
-network state as relations and rules
-network policies as data integrity constraints (ICs)

4

factual network state as relations and rules N=I∪R
-I, a finite set of ground facts

example
-incoming route relation ri/3, outgoing relation ro/3,
-three attributes destination, next_hop, and
path_vector

network state

%% Network ground facts
%% 3 incoming routes and 2 outgoing routes
I1: ri(1.2.3.4, ’router1’, [AS2,AS3,AS5]) :-
I2: ri(1.2.3.4, ’router2’, [AS2,AS4,AS5]) :-
I3: ri(1.2.3.5, ’router1’, [AS3,AS5]) :-
I4: ro(1.2.3.4, ’router2’, [AS2,AS4,AS5]) :-
I5: ro(1.2.3.5, ’router1’, [AS4,AS5]) :-

5

a factual network state N=I∪R
-R, derived network knowledge by rules

example
-all paths to a particular destination (1.2.3.4)

network state

%% Derived path information
%% all available paths to a 1.2.3.4
R1: rpath(z) :- ri(x,y,z), x=1.2.3.4.

5

policies as a finite set of integrity constraints (ICs)
-generative form and denial form

example — path validity
-any selected outgoing route must correspond to some

incoming route

network policy

%% path validity policy
%% generative form
ICvalidity: ri(x,y,z) :- ro(x,y,z).

%% denial form
ICvalidity’: :- ro(x,y,z), ¬ri(x,y,z).

6

policy expressiveness
non-aggregate policy

- constraints over a single path

example — explicit path (ep)
- to better control end to end performance, a sender host may want to

specify the explicit path (a) for carrying traffic to a certain destination
(d)

%% explicit path policy
ICep: z=a :- ro(x,y,z), x=d.

7

policy expressiveness
non-aggregate policy

- constraints over a single path

example — business relationship guideline (GR)
- to maximize revenue and minimize cost, regulate route selection based

on business relations — prefer a route from a customer (respectively,
peer) route over a provider route

%% Gao-Rexford Policy Guideline
ICGR1 :-ro(x,y,z),ri(x,y’,z’),provider(z),customer(z’).
ICGR2 :-ro(x,y,z),ri(x,y’,z’),provider(z),peer(z’).

7

policy expressiveness
non-aggregate policy

- constraints over a single path

example — (MIRO) avoiding unsafe ASes
- MIRO is an extension to today’s interdomain routing, allowing networks

to negotiate paths

%% negotiates a route bypassing a suspicious node b
ICMIRO :- ro(x,y,z), waypoint(z,b).

7

non-aggregate policy
- constraints over a single path

aggregate policy
- involve a group of routes
- without explicit use of aggregate term

policy expressiveness

7

aggregate policy
- involve a group of routes
- without explicit use of aggregate term

example — shortest path (sp)
- select route that has the fewest (AS) hops

policy expressiveness

%% shortest path
ICsp :- ro(x,y,z), ri(x,y2,z2), length(z)>length(z2).

7

aggregate policy
- involve a group of routes
- without explicit use of aggregate term

example — (WISER) joint traffic engineering
- WISER is an extension to the Internet that allows neighboring ASes to

jointly select a path that has the lowest overall cost

policy expressiveness

%% WISER policy
RWiser j(x,y,z):- Local(x,y,z1),Advertised(y,z2),z=z1+z2.
ICWiser :- ro(x,y,z), j(x,y,w), j(x,y2,w2), w>w2.

7

policy expressiveness
ICs unify popular policies and futuristic ones
-non-aggregate policy
- constraints over a single path
-aggregate policy
- involve a group of routes
- without explicit use of aggregate term

7

automated coordination
advantage of logic representation — coordination
by automated reasoning
-determine the interactions between the policies
-combine policies into a coherent new whole

8

P1, P2

policy P2

P1 and P2 are
independent

policy P1

coordination

9

advantage of logic representation — coordination
by automated reasoning
-determine the interactions between the policies
-combine policies into a coherent new whole

P1

policy P2

P1 is stronger?
policy P1

coordination

9

advantage of logic representation — coordination
by automated reasoning
-determine the interactions between the policies
-combine policies into a coherent new whole

P1, P2|P1

policy P2

P1
interacts with
P2, P1 is more

important

policy P1

coordination

9

advantage of logic representation — coordination
by automated reasoning
-determine the interactions between the policies
-combine policies into a coherent new whole

P1

policy P2

P1 is stronger?
policy P1

policy P2

P1, P2|P1

P1
interacts with
P2, P1 is more

important

policy P1

coordination

P1, P2

policy P2

P1 and P2 are
independent

policy P1

key — derive the impact of P1 on P2

9

a realization with the residue method

residue anticipates the impact of P1 on P2
-a fragment of P1 that interacts with P2

-obtained by (partial) subsumption

10

subsumption
(classic) subsumption
for two clauses P1, P2: P1 subsumes P2 if there exists a substitution σ such
that each literal in P1σ occurs in P2

11

(classic) subsumption
for two clauses P1, P2: P1 subsumes P2 if there exists a substitution σ such
that each literal in P1σ occurs in P2

subsumption with arithmetics and comparison
for two policies P1,P2 of the form A1:- B1∧C1 and A2 :- B2∧C2

- B1, B2 are conjunctions of relational literals
- C1,C2 are conjunctions of comparison and arithmetic formulas

P1 subsumes P2 if there exists
- a substitution σ such that each literal in (A1:- B1)σ occurs in A2 :- B2, and
- a solver for arithmetics and comparison that reduces ¬C2 ∧ C1σ to False

11

subsumption

(classic) subsumption
for two clauses P1, P2: P1 subsumes P2 if there exists a substitution σ such
that each literal in P1σ occurs in P2

subsumption with arithmetics and comparison
for two policies P1,P2 of the form A1:- B1∧C1 and A2 :- B2∧C2

- B1, B2 are conjunctions of relational literals
- C1,C2 are conjunctions of comparison and arithmetic formulas

P1 subsumes P2 if there exists
- a substitution σ such that each literal in (A1:- B1)σ occurs in A2 :- B2, and
- a solver for arithmetics and comparison that reduces ¬C2 ∧ C1σ to False

if P1 subsumes P2, then P1 is stronger —
any network compliant with P1 also satisfies P2 11

subsumption

partial subsumption
P1 partially subsumes P2
- if a subclass of P1 subsumes P2, signals policy interaction
-a fragment of P1 — residue — that actually interacts with P2 can be

computed by the subsumption algorithm

12

partial subsumption
P1 partially subsumes P2
- if a subclass of P1 subsumes P2, signals policy interaction
-a fragment of P1 — residue — that actually interacts with P2 can be

computed by the subsumption algorithm

the impact of P1 on P2 is anticipated by the residue

12

residue is “null” — ICMIRO,ICMIRO’
ICMIRO :- ro(x,y,z), waypoint(z,'b').
ICMIRO’ :- ro(u,v,w), waypoint(w,'b'), u = 'd'.

:- ro(x,y,z), waypoint(z,'b').
ICMIRO elements of ICMIRO’

:- ro(u,v,w).

{x=u,y=v,z=w}

:- waypoint(w,’b'). :- waypoint(w,’b').

null

13

residue is “null” — ICMIRO,ICMIRO’
ICMIRO :- ro(x,y,z), waypoint(z,'b').
ICMIRO’ :- ro(u,v,w), waypoint(w,'b'), u = 'd'.

:- ro(x,y,z), waypoint(z,'b').
ICMIRO elements of ICMIRO’

:- ro(u,v,w).

{x=u,y=v,z=w}

:- waypoint(w,’b'). :- waypoint(w,’b').

null

a “null” residue shows ICMIRO is
stronger (subsumption test succeeds)

ICMIRO is stronger than ICMIRO’
13

residue is “null” — IC1,IC2

:- ro(x,y,z), l(z)<5.

IC1 elements of IC2
:- ro(u,v,w).

{x=u,y=v,z=w}

:- l(w)<5. :- l(w)<3

null

IC1: :- ro(x,y,z), l(z)<5.
IC2: :- ro(u,v,w), l(w)<3, w=['AS2','AS3'].

l(w)>5 ∧ l(w)<3
reduces to False

IC1 is stronger than IC2
14

residue is “trivial” — IC3,IC4
IC3: :- ro(x,y,z), cust(x), l(z)<5.
IC4: :- ro(u,v,w), admin(u), waypoint(z,’b’).

:- ro(x,y,z), cust(x), l(z)<5.
IC1 elements of IC2

disjoint

no resolution possible

IC3 is independent of IC4
15

residue is non-trivial — ICsp,ICep
%% shortest path
ICsp :- ro(x,y,z), ri(x,y2,z2), l(z)>l(z2).
%% explicit path policy
ICep: z=a :- ro(x,y,z), x=d.

z=a :- ro(x,y,z), x=d.
ICep elements of ICsp

:- ro(x,y,z).

z=a :- x=d.

16

residue is non-trivial — ICsp,ICep
%% shortest path
ICsp :- ro(x,y,z), ri(x,y2,z2), l(z)>l(z2).
%% explicit path policy
ICep: z=a :- ro(x,y,z), x=d.

z=a :- ro(x,y,z), x=d.
ICep elements of ICsp

:- ro(x,y,z).

z=a :- x=d. a non-trivial residue prescribes the
impact of ICep —
additional conditions that must be
taken into account for ICsp

ICsp affects ICep, as anticipated by the
residue 16

residue is non-trivial — ICsp,ICep
%% shortest path
ICsp :- ro(x,y,z), ri(x,y2,z2), l(z)>l(z2).
%% explicit path policy
ICep: z=a :- ro(x,y,z), x=d.

z=a :- ro(x,y,z), x=d.
ICep elements of IC2

:- ro(x,y,z).

z=a :- x=d.

consider ICep more
important — find
shortest path only for
destinations
other than ‘d’

ICsp :- ro(x,y,z), ri(x,y2,z2), l(z)>l(z2), {z=a :- x=d}.

rewrite shortest path policy — semantically constrained with explicit path!

16

P1

policy P2

P1 is stronger?
policy P1

policy P2

P1, P2|P1

P1
interacts with
P2, P1 is more

important

policy P1

coordination by the residue method

P1, P2

policy P2

P1 and P2 are
independent

policy P1

residue — syntactic fragment that anticipates impact

17

P1

policy P2

P1 is stronger?
policy P1

policy P2

P1, P2|P1

P1
interacts with
P2, P1 is more

important

policy P1

coordination by the residue method

P1, P2

policy P2

residue
is trivial (no
resolution
possible)

policy P1

residue — syntactic fragment that anticipates impact

17

P1

policy P2

“null” residue
policy P1

policy P2

P1, P2|P1

P1
interacts with
P2, P1 is more

important

policy P1

coordination by the residue method

P1, P2

policy P2

residue
is trivial (no
resolution
possible)

policy P1

residue — syntactic fragment that anticipates impact

17

P1

policy P2

“null” residue
policy P1

policy P2

P1, P2{r}non-trivial
residue r

policy P1

coordination by the residue method

P1, P2

policy P2

residue
is trivial (no
resolution
possible)

policy P1

residue — syntactic fragment that anticipates impact

17

preliminary evaluation
prototype
-implement the standard Ɵ-subsumption algorithm in Python
-macOS with 3.4GHz Intel Core i5 processor, 16GB RAM

18

preliminary evaluation
measure residue generation processing delay
-two MIRO policies with varying sizes
- policy size — number of randomly generated waypoint literals
-scale well
- scale better when we fix the size of the subsuming policy

MIRO residue evaluates to true (when MIRO policy is honored). That is, performance
concern kicks in only after security requirement is satisfied.

5 Preliminary evaluation

We evaluate the performance of our proposed logical policies in Ravel [24], a database-
defined network that uses the Postgres database as the network controller, which is
particularly convenient for our experiment. All experiments were performed on the ma-
cOS platform with a 3.4 GHz Intel Core i5 processor and 16 GB 2400 MHz DDR4
RAM.

To measure the overhead of the residue method, we implemented a prototype of
the subsumption algorithm based residue generation in Python: for a given subsuming
clause (denoted by P1, has M literals) and a clause being subsumed (denoted by P2, has
N literals), we loop over all the subclauses of P1 and test if the subclause subsumes P2.
We applied the standard ✓-subsumption algorithm to implement the subsumption test,
which has complexity O

�
N

k
�

as we need to map each literal of the subclause (ranging
from 1 to k for a subclause with k literals) to a literal in P2 (ranging from 1 to N) [17].
The overall complexity of the residue generator is O

⇣
M

M

2 N
M

⌘
, where the term M

M

2

is a coarse upper bound for binomial coefficients.
We evaluated the performance of our residue generator with MIRO and Wiser poli-

cies. To test its scalability, we increased the number of waypoint literals in MIRO policy
with randomly generated networks (to avoid).

0.1

1

10

100

(2,4) (2,16) (2,64) (2,2) (4,2) (8,2)

de
la
y
(m
s)

(size of MIRO policy 1, size of MIRO policy 2)

0.364
0.986

3.356

0.268

1.429

37.102

Fig. 2: Residue generation for MIRO policies. Fig. 3: Residue generation for Wiser and
MIRO.

Figure 2 shows the residue generator processing delay (y axis, log scaled) for two
MIRO policies with different size combinations (as indicated by the tuple below the x
axis). For each combination, we plotted the average delay of 500 runs. The small bar
on the top of each box indicates the standard variation. The left three boxes with grey
filling show the growing trend of delay with respect to N — M is fixed at 2; and the
right three boxes with grids filling show the growing trend with respect to M — N is
fixed at 2. When M is fixed, the residue generator scales better — even for P2 having
very large size of 64, it finishes in 3.356 ms on average. The delay, however, increases

18

preliminary evaluation
measure residue generation processing delay
-MIRO policy of varying sizes (M)
-Wiser policy of 6 literals

MIRO residue evaluates to true (when MIRO policy is honored). That is, performance
concern kicks in only after security requirement is satisfied.

5 Preliminary evaluation

We evaluate the performance of our proposed logical policies in Ravel [24], a database-
defined network that uses the Postgres database as the network controller, which is
particularly convenient for our experiment. All experiments were performed on the ma-
cOS platform with a 3.4 GHz Intel Core i5 processor and 16 GB 2400 MHz DDR4
RAM.

To measure the overhead of the residue method, we implemented a prototype of
the subsumption algorithm based residue generation in Python: for a given subsuming
clause (denoted by P1, has M literals) and a clause being subsumed (denoted by P2, has
N literals), we loop over all the subclauses of P1 and test if the subclause subsumes P2.
We applied the standard ✓-subsumption algorithm to implement the subsumption test,
which has complexity O

�
N

k
�

as we need to map each literal of the subclause (ranging
from 1 to k for a subclause with k literals) to a literal in P2 (ranging from 1 to N) [17].
The overall complexity of the residue generator is O

⇣
M

M

2 N
M

⌘
, where the term M

M

2

is a coarse upper bound for binomial coefficients.
We evaluated the performance of our residue generator with MIRO and Wiser poli-

cies. To test its scalability, we increased the number of waypoint literals in MIRO policy
with randomly generated networks (to avoid).

Fig. 2: Residue generation for MIRO policies.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.266 0.705 10.524

C
D
F

delay (ms)

M=2
M=4
M=8

Fig. 3: Residue generation for Wiser and
MIRO.

Figure 2 shows the residue generator processing delay (y axis, log scaled) for two
MIRO policies with different size combinations (as indicated by the tuple below the x
axis). For each combination, we plotted the average delay of 500 runs. The small bar
on the top of each box indicates the standard variation. The left three boxes with grey
filling show the growing trend of delay with respect to N — M is fixed at 2; and the
right three boxes with grids filling show the growing trend with respect to M — N is
fixed at 2. When M is fixed, the residue generator scales better — even for P2 having
very large size of 64, it finishes in 3.356 ms on average. The delay, however, increases

18

summary

can we take a declarative approach towards
Internet routing policies that are easier to manage?

19
Ravel: database-defined networking ravel-net.org

http://ravel-net.org

