(lr)relevance reasoning for software-defined network

Anduo Wang* Jason Croft† Xueyuan Mei† Matthew Caesar† Brighten Godfrey†

*Temple University

†University of Illinois Urbana-Champaign

software-defined networking (SDN)

software-defined networking (SDN)

SDN moves complexity to control software: an opportunity and challenge

software-defined networking (SDN)

this talk

SDN control software

SDN control software

an individual control operation

SDN control software

grouped into module

managing complexity in control software

dependency occur within and across modules

- modular programming abstraction [NSDI'13, 15; SIGCOMM'14, 15]
- limitation: manual, requires understanding of module internals

managing complexity in control software

multiple dependencies can conflict

- conflict resolution: module-level priority [many popular control platforms]
- limitation: coarse-grained, manual

managing complexity in control software

updates can go wrong

- debugging and verification [SIGCOMM'14, NSDI'13, 15, 16]
- limitation: identify incorrect network events/states but not revealing incorrect control logic, post-mortem

automated reasoning support

- automated: reduce human
 - involvement with formal tool (SMT solver)
- finer-grained: operationlevel
- static: prior-to deployment,
- logic based: derive proper interactions among controls

example reasoning task: dependency

operation A depends on B

- (I) A update can activate B
- (2) B update never activates A

dependency

operation A depends on B

- (I) A is relevant to B: can find a B update such that violates A
- (2) B is irrelevant to A: cannot find a B update that violates A

formal model

SDN control loop

a unified database representation

ravel: a database-defined network [SOSR'16] ravel-net.org

dependency and irrelevance reasoning

dependency in SDN

violation irrelevant? updates violation

irrelevant database updates

(ir)relevant database update

usage: synthesize orchestrator

construct dependency graph

topological sort

- remove conflicts with user guidance
- assign each update a stratum number

synthesize a master orchestrator

activate an update only when all updates with smaller stratum numbers have completed

usage: reasoning with partial information

conflict-free guarantee

if $\neg C_A \supset \neg C_B$, A is guaranteed to be irrelevant to B (corollary: synthesize conflict-free updates for A regarding B by rewriting C_A to $C_A \lor C_B$)

feasibility of conflict-free update

if $\neg C_A \land \neg C_B$ is SAT, there exists some A update that is irrelevant to B

infeasibility of conflict-free updates

if $\neg C_A \land \neg C_B$ is UNSAT, no A update exists that is irrelevant to B

thank you

backup

open questions

obtain the database representation

- use Ravel, a database-defined control platform
 - <u>ravel-net.org</u>

extract the database representation from arbitrary control software

- manually construct a map between data objects and database tables
- automatically convert data updates to DB write with conditions?
- extract view condition?

limitation

distribution and concurrency

- the network data plane is a distributed system with concurrent updates
- SDN relies on multiple controller for scalability combine DB concurrency control and irrelevance reasoning?