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from datalog to fauré-log

datalog fauré-log

syntax

(rules q)

H(u) :− B1(u1),···,Bn(un).
H(u)[(∧ni=1φi)∧(∧mi=1Ci)] :− 
B1(u1)[φ1],···,Bn(un)[φn], 
C1,···,Cm.

semantics q(I) = {υ(u)| υ(ui)∈I}, I is a database over schema R

ui (free tuples) contains symbols in var(q) and dom(R)

dom(R) (attribute 
domain over schema R)

constants constants U {x̄,ȳ,z̄,…}

υ (valuation) υ: var(q)→dom(R) (i.e.,{x,y,z,…} → constants U {x̄,ȳ,z̄,…})
var(q) (variables) {x,y,z,…}	

notions and definitions
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Fauré-log queries
1 2 3 4 5

z ̄ȳx ̄ primary

backup F node node

1 2 x=̄1

1 3 x=̄0

2 3 ȳ=1

2 4 ȳ=0

…

R src dest

1 2 x=̄1

…

1 5 x=̄1⋀ȳ=1⋀z=̄1

1 5 x=̄0⋀z=̄1

1 5 x=̄0⋀z=̄0

1 5 x=̄1⋀ȳ=0

2 3 ȳ=1

…

/* reachability query */


R(f,n1,n2)[φ] :- F(f,n1,n2)[φ].           
R(f,n1,n2)[φF∧φR] :- F(f,n1,n3)[φF], R(f,n3,n2)[φR].

recursive fauré-log
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Fauré-log queries
1 2 3 4 5

z ̄ȳx ̄ primary

backup

R src dest

1 2 x=̄1

…

1 5 x=̄1⋀ȳ=1⋀z=̄1

1 5 x=̄0⋀z=̄1

1 5 x=̄0⋀z=̄0

1 5 x=̄1⋀ȳ=0

2 3 ȳ=1

…

T1(f,n1,n2)[φ∧ x̄+ȳ+z̄=1] :- R(f,n1,n2)[φ],x̄+ȳ+z̄=1. 
% reachability under 2-link failure


T2(f,2,5)[φ∧ ȳ=0] :- T1(f,2,5)[φ], ȳ=0. % 
reachability between 2 and 5 under 2-link 
failure, one of the failure must be (2,3)

T3(f,1,n2)[φ ∧ ȳ+z̄<2] :- R(f,1,n2)[φ], ȳ+z̄<2. % 
reachability to 1 with at least 1-link failure 

failure patterns over R
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stronger
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subsumption

T1,  T2

CS U Clb “T1 true”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS

Mkt traffic to the critical server CS 
to go through a firewall

packets to all the servers, must use 
one of the three ports 80, 334 and 
7000, and must pass through a 
firewall

80, 334, 7000

CS T1

implies?constraint subsumption

9

“T2 don’t know”



category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS80, 334, 7000

CS T1

Mkt traffic to the critical server CS 
to go through a firewall

packets to all the servers, must use 
one of the three ports 80, 334 and 
7000, and must pass through a 
firewall

panic :- R(Mkt,CS,p̄),                         
d        ¬Fw(Mkt,CS)


panic :- Vs(x,y,p) 


Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),

       ¬Fw(x̄,ȳ).

Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),

       p̄≠80,p̄≠344,

       p̄≠7000.

constraint as 

0-ary fauré-log 
query (panic)

9
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panic
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preliminary result
practical implementation in SQL

-shallow embedding of fauré-log in PostgreSQL + Z3


evaluation

-realistic topology (inferred from BGP announcements)

-synthetic link failures

-representative queries

- q4-q5 (all pair-wise reachability), q6-q8 (various failure patterns)

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Fangping Lan, Bin Gui and Anduo Wang

q4 � q5 q6 q7 q8
#pre�x sql sql Z3 #tuples sql Z3 #tuples sql Z3 #tuples
1000 0.625s 0.85s(0.11%) 796.35s 42425 0.08s(22.86%) 0.27s 16 0.15s(1.17%) 12.64s 828
10000 5.75s 8.96s - 418224 0.27s(7.33%) 3.41s 194 1.8s(1.27%) 137.05s 8706
100000 54.85s 113.48s - 4435862 1.66s(6.18%) 25.22s 1387 34.67s(1.71%) 1941.04s 86360
922067 816.4s 4169.02s - 46503247 11.1s(3.71%) 288.17s 16490 267.05s - 858180

Table 4: Running time (seconds) of reachability analysis on four rib inputs: ‘-’ means over 2 hours.

It turns out that this can be veri�ed by the fauré-log query
evaluation method as in category (i) test.

6 PRELIMINARY RESULTS
Practical implementation.We implement fauré-log in the
PostgreSQL database [48]. This is especially important as
it allows us to leverage existing database structure (e.g., in-
dexing) to accelerate fauré-log evaluation. The challenge
is that Postgres (like most databases) does not support c-
tables: the existing data �elds and SQL operations do not
permit c-variables, and the default SQL evaluation cannot
be easily altered to account for conditions. Fortunately, the
c-valuation strategy developed in § 3 gives a straightforward
method to rewrite the default valuation in three steps: �rst,
we use pure SQL to generate the regular data part of a c-table
where some key terms (strings) are reserved for c-variables;
next, the conditions are added and manipulated (including
fauré-log pattern matching) by a sequence of SQL UPDATE;
�nally, the Z3 solver [14] is invoked to remove tuples with
contradictory conditions. We also note that while Postgres
supports native recursion, recursive fauré-log is implemented
by strati�cation [2, 24] to correctly process the conditions.
Preliminary evaluation. We evaluate the running time of
fauré-log queries in listing 2 on realistic forwarding con�gu-
ration inferred from BGP RIB (route-views2.oregon-ix.net on
2021-06-10). We choose listing 2 because it covers representa-
tive features of fauré-log such as recursive and nested query.
For a given set of pre�xes (which determines the size of the
resulting F table), we generate for each pre�x the forwarding
entries as follows: randomly select 5 AS paths where one of
them is used as a primary link while the rest serve as the
backups; set the preference of the backup links (in a random
order) so that a backup will be used only when the primary
and all the backups with higher preferences have failed. We
then perform the pair-wise reachability analysis (result in R)
by q4, q5, as well as reachability under three failure patterns
as in q6 � q8. All experiments are run on a 64-bit laptop with
1.4 GHz CPU and 8 GB memory.

Table 4 summarizes the results: on four inputs (# of pre-
�xes from 1000 to 922067), for each analysis except the re-
cursion q4 � q5 that compute all pair-wise reachability, we
show the SQL and Z3 completion time (averaged over 10
runs) separately. The number of tuples generated indicating
the size of the analysis is also illustrated. Overall, the SQL
running time is encouraging, even on 922067 pre�xes (all
the pre�xes in the RIB �le), all pair-wise analysis through
recursion complete in < 70 minutes.

7 RELATEDWORK
Network datalog. Datalog-like language was �rst intro-
duced in declarative networking [10, 11, 39–42, 44] for its
compact and high-level expressions, and later evolved into
an enabling technique for networkmanagement [8, 13, 26, 36,
37] and network veri�cation [17, 43, 62]. What sets fauré-log
apart is the support for incomplete information (e.g., c-tables)
and new analysis techniques (e.g., query containment).
Partial representation. One strategy to address the scala-
bility, performance, and feature coverage challenges in net-
work analysis is to approximate the entire network state by
some forms of partial representation. Prior work includes
specialized data structure [19] tailored to speci�c veri�cation
task [6] or network topology [47]. In contrast, the c-tables
at the heart of fauré form a general representation system
for incomplete information: c-tables can be queried by ar-
bitrary fauré-log programs, and the answer can always be
represented by another c-table.
Incremental computation. Another commonly used strat-
egy to scale analysis is incremental veri�cation that avoids
exhaustive search. Notable examples include INCV [62] that
leverages generic engine (e.g., di�erential datalog), and Jin-
jing [57] that exploits practical heuristics. Key to these tools
is locating a (drastically smaller) subset of the network state
that is relevant to constraint checking. In contrast, fauré’s
relative-complete veri�cation uses constraint subsumption, a
reasoning process that entirely eliminates the need to access
network state.

8 CONCLUSION
This paper argues for a partial approach to network analysis
when our knowledge of the network is uncertain or un-
available, a signi�cant departure from the de-facto complete
scheme. Central to partial analysis is the notion of loss-less
modeling that accurately models network uncertainty and
relative-complete veri�cation that reaches an inconclusive
result only when more information is absolutely needed.
As a realization of this vision, we present fauré, a prelimi-
nary design in which, a datalog extension called fauré-log is
developed to access and manipulate partial network states,
various static analysis is combined with fauré-log evaluation
to reason about incomplete network information. Practical
implementation of fauré and encouraging evaluation are also
presented.
Acknowledgments.We thank theHotNets reviewerswhose
feedback helped improve this paper. This work was sup-
ported by National Science Foundation Award CNS-1909450.
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