
Fauré: a Partial Approach to
Network Analysis

Fangping Lan, Bin Gui, and Anduo Wang
Temple University

HotNets 2021, Nov 11

network analysis — significant progress

1

[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis.
[SIGCOMM’16] Fast Control Plane Analysis

Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool

for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

… …

network analysis — significant progress

1

[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis.
[SIGCOMM’16] Fast Control Plane Analysis

Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool

for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

… …

network analysis — significant progress

1

[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis.
[SIGCOMM’16] Fast Control Plane Analysis

Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool

for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

… …

network analysis — significant progress

1

[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis.
[SIGCOMM’16] Fast Control Plane Analysis

Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool

for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

… …

network analysis — significant progress

1

[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis.
[SIGCOMM’16] Fast Control Plane Analysis

Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool

for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

… …

network analysis

analyzer

query

answer

1

network

enterprise,
private WANs,
inter-domain…

reachability,
multi-path consistency,
convergence…

guarantee,
bug, …

network analysis

analyzer

query

answer

1

network testing, simulation,
model checking …

enterprise,
private WANs,
inter-domain…

reachability,
multi-path consistency,
convergence…

guarantee,
bug, …

classical formal analysis

complete network analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

1

event
at t+k

challenges with complete analysis

comprehensive
evaluation

query

decisive answer

classical formal analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

control
protocol

data plane
event
at t+1

data planedata plane
at t

control
protocol

event
at t

1

event
at t+k

challenges with complete analysis

comprehensive
evaluation

query

decisive answer

classical formal analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

control
protocol

data plane
event
at t+1

data planedata plane
at t

control
protocol

event
at t

uncertain environment

repeated analysis?

1

event
at t+k

challenges with complete analysis

comprehensive
evaluation

query

decisive answer

comprehensive
evaluation

query

decisive answer

classical formal analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

control
protocol

data plane
event
at t+1

data planedata plane
at t

control
protocol

event
at t

uncertain environment

repeated analysis?

known

unknown

1

event
at t+k

challenges with complete analysis

comprehensive
evaluation

query

decisive answer

comprehensive
evaluation

query

decisive answer

classical formal analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

control
protocol

data plane
event
at t+1

data planedata plane
at t

control
protocol

event
at t

uncertain environment

repeated analysis?

known

unknown

unknown information

stop working
entirely?

1

classical formal analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

?

query

uncertain environments

?

query

partial information

challenges with complete analysis

decisive answer

decisive answer

1

classical formal analysis

a partial approach

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

partial model

query

uncorrupted answeruncertain environments

loss-less modeling

?

query

partial information decisive answer

2

classical formal analysis

a partial approach

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

partial model

query

uncorrupted answeruncertain environments

verification

query

correct answerpartial information

“don’t know, need more information”

loss-less modeling

relative-complete verification

2

loss-less modeling

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

partial model

query

uncorrupted answeruncertain environments

verification

query

correct answerpartial information

“don’t know, need more information”

3

modeling 1 2 3 4 5

F node node

1 2

2 3

3 4

4 5

F node node

1 3

2 3

3 4

4 5

…

F node node

1 3

2 4

3 5

4 5

primary
backup

…

3

forwarding
tables

modeling 1 2 3 4 5

F node node

1 2

2 3

3 4

4 5

F node node

1 3

2 3

3 4

4 5

…

F node node

1 3

2 4

3 5

4 5

primary
backup

…

R src dest

1 2

1 3

1 4

1 5

2 3

2 4

…

R src dest

1 3

1 4

1 5

2 3

2 4

…

R src dest

1 3

1 5

2 4

…

…

(reachability)
query

3

forwarding
tables

modeling 1 2 3 4 5

F node node

1 2 x=̄1

1 3 x=̄0

2 3 ȳ=1

2 4 ȳ=0

…

R src dest

1 2

1 3

1 4

1 5

2 3

2 4

…

F node node

1 2

2 3

3 4

4 5

F node node

1 3

2 3

3 4

4 5

…

F node node

1 3

2 4

3 5

4 5

z ̄ȳx ̄

R src dest

1 3

1 4

1 5

2 3

2 4

…

R src dest

1 3

1 5

2 4

…

…

primary
backup

…

query

Rep

a tuple can
occur only when
the condition is

satisfied

3

c-table:

1: normal
0: failed

modeling 1 2 3 4 5

F node node

1 2 x=̄1

1 3 x=̄0

2 3 ȳ=1

2 4 ȳ=0

…

R src dest

1 2

1 3

1 4

1 5

2 3

2 4

…

F node node

1 2

2 3

3 4

4 5

F node node

1 3

2 3

3 4

4 5

…

F node node

1 3

2 4

3 5

4 5

R src dest

1 2 x=̄1

…

1 5 x=̄1⋀ȳ=1⋀z=̄1

1 5 x=̄0⋀z=̄1

1 5 x=̄0⋀z=̄0

1 5 x=̄1⋀ȳ=0

2 3 ȳ=1

…

z ̄ȳx ̄

R src dest

1 3

1 4

1 5

2 3

2 4

…

R src dest

1 3

1 5

2 4

…

…

primary
backup

…

query query

Rep
1: normal
0: failed

3

a tuple can
occur only when
the condition is

satisfied

modeling 1 2 3 4 5

F node node

1 2 x=̄1

1 3 x=̄0

2 3 ȳ=1

2 4 ȳ=0

…

R src dest

1 2

1 3

1 4

1 5

2 3

2 4

…

F node node

1 2

2 3

3 4

4 5

F node node

1 3

2 3

3 4

4 5

…

F node node

1 3

2 4

3 5

4 5

R src dest

1 2 x=̄1

…

1 5 x=̄1⋀ȳ=1⋀z=̄1

1 5 x=̄0⋀z=̄1

1 5 x=̄0⋀z=̄0

1 5 x=̄1⋀ȳ=0

2 3 ȳ=1

…

z ̄ȳx ̄

R src dest

1 3

1 4

1 5

2 3

2 4

…

R src dest

1 3

1 5

2 4

…

…

primary
backup

…

query query

Rep

Rep

3

all definite instances (regular tables) partial representation (c-tables)

loss-less modeling

query query

Rep

Rep

…

…

difference (between regular- and c- tables) not visible to the query
4

all definite instances (regular tables) partial representation (c-tables)

loss-less modeling

query query

Rep

Rep

…

…

difference (between regular- and c- tables) not visible to the query
4

partial representation (c-tables)all definite instances (regular tables)

loss-less modeling with SQL?

SQL
extended SQL
(well-known)

Rep

Rep

…

…

difference (between regular- and c- tables) not visible to the SQL
4

✓ ad hoc data retrieval ✗ static analysis

partial representation (c-tables)all definite instances (regular tables)

loss-less modeling with SQL?

SQL extended SQL

Rep

Rep

…

…

✓ ✗
4

all definite instances (regular tables) partial representation (c-tables)

loss-less modeling with fauré-log

datalog
extended
datalog?

Rep

Rep

…

…

✓ ✗✓ ad hoc data retrieval ✗ static analysis ✓ ✓
4

from datalog to fauré-log

datalog fauré-log

syntax
(rules q)

H(u) :− B1(u1),···,Bn(un).
H(u)[(∧ni=1φi)∧(∧mi=1Ci)] :−
B1(u1)[φ1],···,Bn(un)[φn],
C1,···,Cm.

semantics q(I) = {υ(u)| υ(ui)∈I}, I is a database over schema R

ui (free tuples) contains symbols in var(q) and dom(R)

dom(R) (attribute
domain over schema R)

constants constants U {x̄,ȳ,z̄,…}

υ (valuation) υ: var(q)→dom(R) (i.e.,{x,y,z,…} → constants U {x̄,ȳ,z̄,…})
var(q) (variables) {x,y,z,…}

notions and definitions

5

Fauré-log queries
1 2 3 4 5

z ̄ȳx ̄ primary
backup F node node

1 2 x=̄1

1 3 x=̄0

2 3 ȳ=1

2 4 ȳ=0

…

R src dest

1 2 x=̄1

…

1 5 x=̄1⋀ȳ=1⋀z=̄1

1 5 x=̄0⋀z=̄1

1 5 x=̄0⋀z=̄0

1 5 x=̄1⋀ȳ=0

2 3 ȳ=1

…

/* reachability query */

R(f,n1,n2)[φ] :- F(f,n1,n2)[φ].
R(f,n1,n2)[φF∧φR] :- F(f,n1,n3)[φF], R(f,n3,n2)[φR].

recursive fauré-log

6

Fauré-log queries
1 2 3 4 5

z ̄ȳx ̄ primary
backup

R src dest

1 2 x=̄1

…

1 5 x=̄1⋀ȳ=1⋀z=̄1

1 5 x=̄0⋀z=̄1

1 5 x=̄0⋀z=̄0

1 5 x=̄1⋀ȳ=0

2 3 ȳ=1

…

T1(f,n1,n2)[φ∧ x̄+ȳ+z̄=1] :- R(f,n1,n2)[φ],x̄+ȳ+z̄=1.
% reachability under 2-link failure

T2(f,2,5)[φ∧ ȳ=0] :- T1(f,2,5)[φ], ȳ=0. %
reachability between 2 and 5 under 2-link
failure, one of the failure must be (2,3)

T3(f,1,n2)[φ ∧ ȳ+z̄<2] :- R(f,1,n2)[φ], ȳ+z̄<2. %
reachability to 1 with at least 1-link failure

failure patterns over R

6

relative-complete verification

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

partial model

query

uncorrupted answeruncertain environments

verification

query

correct answerpartial knowledge

“don’t know, need more information”

7

relative-complete verification

verifier

query

network
knowledge

answer

“don’t know” when more information is needed

7

more
knowledge

relative-complete verification

verifier

query

network
knowledge

answer

verifier

“don’t know”

answer

“don’t know”

7

more

…

more
knowledge

more
knowledge

relative-complete verification

test (i)

query

network
knowledge

answer

test (ii)

test (n)

“don’t know”

answer

answer

“don’t know”

…

stronger

7

??

?

query

? answer

“don’t know”

answer

example relative-complete verification

R&D.

Mkt.

GS

CS

verification task
- invariants (T1,T2) continue to

hold after updates

other teams
- security team maintains CS
- TE team maintains Clb

(critical server)

(general server)

(market office.)

(R&D office.)

??

?

query

? answer

“don’t know”

answer

example relative-complete verification

R&D.

Mkt.

GS

CS

verification task
- invariants (T1,T2) continue to

hold after updates

other teams
- security team maintains CS
- TE team maintains Clb

(critical server)

(general server)

(market office.)

(R&D office.)

other
constraints subsumption

??updates rewrite +
subsumption

?

query

? answer

“don’t know”

answer

example relative-complete verification

R&D.

Mkt.

GS

CS

verification task
- invariants (T1,T2) continue to

hold after updates

other teams
- security team maintains CS
- TE team maintains Clb

(critical server)

(general server)

(market office.)

(R&D office.)

other
constraints subsumption

subsumption

T1, T2

CS U Clb “T1 true”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS

Mkt traffic to the critical server CS
to go through a firewall

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

80, 334, 7000

CS T1

implies?constraint subsumption

9

“T2 don’t know”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS80, 334, 7000

CS T1

Mkt traffic to the critical server CS
to go through a firewall

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

panic :- R(Mkt,CS,p̄),
d ¬Fw(Mkt,CS)

panic :- Vs(x,y,p)

Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 ¬Fw(x̄,ȳ).
Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 p̄≠80,p̄≠344,
 p̄≠7000.

constraint as
0-ary fauré-log
query (panic)

9

subsumption

T1, T2

CS U Clb “T1 true”

“T2 don’t know”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS80, 334, 7000

CS T1

Mkt traffic to the critical server CS
to go through a firewall

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

panic :- R(Mkt,CS,p̄),
d ¬Fw(Mkt,CS)

panic :- Vs(x,y,p)

Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 ¬Fw(x̄,ȳ).
Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 p̄≠80,p̄≠344,
 p̄≠7000.

9

subsumption

T1, T2

CS U Clb “T1 true”

“T2 don’t know”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS80, 334, 7000

CS T1

Mkt traffic to the critical server CS
to go through a firewall

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

panic :- R(Mkt,CS,p̄),
d ¬Fw(Mkt,CS)

panic :- Vs(x,y,p)

Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 ¬Fw(x̄,ȳ).
Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 p̄≠80,p̄≠344,
 p̄≠7000.

program containment

9

subsumption

T1, T2

CS U Clb “T1 true”

“T2 don’t know”

subsumption

T1, T2

CS U Clb “T1 true”

“T2 don’t know”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS80, 334, 7000

CS T1

Mkt traffic to the critical server CS
to go through a firewall

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

panic :- R(Mkt,CS,p̄),
d ¬Fw(Mkt,CS)

panic :- Vs(x,y,p)

Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 ¬Fw(x̄,ȳ).
Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 p̄≠80,p̄≠344,
 p̄≠7000.

violation of T1 implies violation of CS

program containment

9

subsumption

T1, T2

CS U Clb “T1 true”

“T2 don’t know”

category (i) test: using only constraints

FW

R&D.

Mkt.

GS

CS FW

R&D.

Mkt.

GS

CS80, 334, 7000

CS T1

Mkt traffic to the critical server CS
to go through a firewall

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

panic :- R(Mkt,CS,p̄),
d ¬Fw(Mkt,CS)

panic :- Vs(x,y,p)

Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 ¬Fw(x̄,ȳ).
Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),
 p̄≠80,p̄≠344,
 p̄≠7000.

violation of T1 implies violation of CS

program containment

proposition [automate subsumption]
∀p1,p2. p1 and p2 are two constraint
programs, then p1⊇p2 (p1 contains/
implies p2) if applying p1 (i.e., fauré-log
valuation) to the “instance” of p2 yeilds
panic

9

?

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

LB

R&D.

Mkt.

GS

CS

Clb

LB

R&D.

Mkt.

GS

CS

T2: R&D traffic to all servers to
pass through a load balancer.

T2

10

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

T2
panic :- R(R&D,ȳ,7000),
 ¬Lb(R&D,ȳ).

LB

R&D.

Mkt.

GS

CS

Clb

10

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

T2
panic :- R(R&D,ȳ,7000),
 ¬Lb(R&D,ȳ).

LB

R&D.

Mkt.

GS

CS

Clb

incorporated into T2 by rewrites

10

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

T2
panic :- R(R&D,ȳ,7000),
 ¬Lb(R&D,ȳ).

LB

R&D.

Mkt.

GS

CS

Clb

T2’
/* add (R&D,GS) to LB */
Lb(R&D,GS).  
Lb1(x̄,ȳ) :- Lb(x̄,ȳ)

 
/* delete (Mkt,CS) LB */
Lb2(x̄,ȳ):- Lb1(x̄,ȳ)[x̄≠Mkt]  
Lb2(x̄,ȳ) :- Lb1(x̄,ȳ)[ȳ≠CS]  

/*panic after updates */
panic :- R(R&D,ȳ,7000),
ddddddddd¬Lb2(R&D,ȳ)

incorporated into T2 by rewrites

10

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

T2
panic :- R(R&D,ȳ,7000),
 ¬Lb(R&D,ȳ).

LB

R&D.

Mkt.

GS

CS

Clb

T2’
/* add (R&D,GS) to LB */
Lb(R&D,GS).  
Lb1(x̄,ȳ) :- Lb(x̄,ȳ)

 
/* delete (Mkt,CS) LB */
Lb2(x̄,ȳ):- Lb1(x̄,ȳ)[x̄≠Mkt]  
Lb2(x̄,ȳ) :- Lb1(x̄,ȳ)[ȳ≠CS]  

/*panic after updates */
panic :- R(R&D,ȳ,7000),
ddddddddd¬Lb2(R&D,ȳ)

panic :- Vt(x,y,p)

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),x̄≠Mkt,x̄≠R&D.

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),¬Lb(x̄,CS)

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),p̄≠7000

10

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

T2
panic :- R(R&D,ȳ,7000),
 ¬Lb(R&D,ȳ).

LB

R&D.

Mkt.

GS

CS

Clb

T2’
/* add (R&D,GS) to LB */
Lb(R&D,GS).  
Lb1(x̄,ȳ) :- Lb(x̄,ȳ)

 
/* delete (Mkt,CS) LB */
Lb2(x̄,ȳ):- Lb1(x̄,ȳ)[x̄≠Mkt]  
Lb2(x̄,ȳ) :- Lb1(x̄,ȳ)[ȳ≠CS]  

/*panic after updates */
panic :- R(R&D,ȳ,7000),
ddddddddd¬Lb2(R&D,ȳ)

subsumespanic :- Vt(x,y,p)

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),x̄≠Mkt,x̄≠R&D.

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),¬Lb(x̄,CS)

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),p̄≠7000

10

updates

rewrite +
subsumption

CS U Clb “T2”

“T2 don’t know”

category (ii) test: using constraints & updates

…

LB

R&D.

Mkt.

GS

CS

updates:

-

+

T2
panic :- R(R&D,ȳ,7000),
 ¬Lb(R&D,ȳ).

LB

R&D.

Mkt.

GS

CS

Clb

T2’
/* add (R&D,GS) to LB */
Lb(R&D,GS).  
Lb1(x̄,ȳ) :- Lb(x̄,ȳ)

 
/* delete (Mkt,CS) LB */
Lb2(x̄,ȳ):- Lb1(x̄,ȳ)[x̄≠Mkt]  
Lb2(x̄,ȳ) :- Lb1(x̄,ȳ)[ȳ≠CS]  

/*panic after updates */
panic :- R(R&D,ȳ,7000),
ddddddddd¬Lb2(R&D,ȳ)

subsumespanic :- Vt(x,y,p)

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),x̄≠Mkt,x̄≠R&D.

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),¬Lb(x̄,CS)

Vt(x̄,CS,p̄) :-
R(x̄,CS,p̄),p̄≠7000

proposition
given a constraint C and an update U,
incorporate U into C by rewriting C to
C′: C holds after the update U iff C’
holds before the update

10

preliminary result
practical implementation in SQL
-shallow embedding of fauré-log in PostgreSQL + Z3

evaluation
-realistic topology (inferred from BGP announcements)
-synthetic link failures
-representative queries
- q4-q5 (all pair-wise reachability), q6-q8 (various failure patterns)

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Fangping Lan, Bin Gui and Anduo Wang

q4 � q5 q6 q7 q8
#pre�x sql sql Z3 #tuples sql Z3 #tuples sql Z3 #tuples
1000 0.625s 0.85s(0.11%) 796.35s 42425 0.08s(22.86%) 0.27s 16 0.15s(1.17%) 12.64s 828
10000 5.75s 8.96s - 418224 0.27s(7.33%) 3.41s 194 1.8s(1.27%) 137.05s 8706
100000 54.85s 113.48s - 4435862 1.66s(6.18%) 25.22s 1387 34.67s(1.71%) 1941.04s 86360
922067 816.4s 4169.02s - 46503247 11.1s(3.71%) 288.17s 16490 267.05s - 858180

Table 4: Running time (seconds) of reachability analysis on four rib inputs: ‘-’ means over 2 hours.

It turns out that this can be veri�ed by the fauré-log query
evaluation method as in category (i) test.

6 PRELIMINARY RESULTS
Practical implementation.We implement fauré-log in the
PostgreSQL database [48]. This is especially important as
it allows us to leverage existing database structure (e.g., in-
dexing) to accelerate fauré-log evaluation. The challenge
is that Postgres (like most databases) does not support c-
tables: the existing data �elds and SQL operations do not
permit c-variables, and the default SQL evaluation cannot
be easily altered to account for conditions. Fortunately, the
c-valuation strategy developed in § 3 gives a straightforward
method to rewrite the default valuation in three steps: �rst,
we use pure SQL to generate the regular data part of a c-table
where some key terms (strings) are reserved for c-variables;
next, the conditions are added and manipulated (including
fauré-log pattern matching) by a sequence of SQL UPDATE;
�nally, the Z3 solver [14] is invoked to remove tuples with
contradictory conditions. We also note that while Postgres
supports native recursion, recursive fauré-log is implemented
by strati�cation [2, 24] to correctly process the conditions.
Preliminary evaluation. We evaluate the running time of
fauré-log queries in listing 2 on realistic forwarding con�gu-
ration inferred from BGP RIB (route-views2.oregon-ix.net on
2021-06-10). We choose listing 2 because it covers representa-
tive features of fauré-log such as recursive and nested query.
For a given set of pre�xes (which determines the size of the
resulting F table), we generate for each pre�x the forwarding
entries as follows: randomly select 5 AS paths where one of
them is used as a primary link while the rest serve as the
backups; set the preference of the backup links (in a random
order) so that a backup will be used only when the primary
and all the backups with higher preferences have failed. We
then perform the pair-wise reachability analysis (result in R)
by q4, q5, as well as reachability under three failure patterns
as in q6 � q8. All experiments are run on a 64-bit laptop with
1.4 GHz CPU and 8 GB memory.

Table 4 summarizes the results: on four inputs (# of pre-
�xes from 1000 to 922067), for each analysis except the re-
cursion q4 � q5 that compute all pair-wise reachability, we
show the SQL and Z3 completion time (averaged over 10
runs) separately. The number of tuples generated indicating
the size of the analysis is also illustrated. Overall, the SQL
running time is encouraging, even on 922067 pre�xes (all
the pre�xes in the RIB �le), all pair-wise analysis through
recursion complete in < 70 minutes.

7 RELATEDWORK
Network datalog. Datalog-like language was �rst intro-
duced in declarative networking [10, 11, 39–42, 44] for its
compact and high-level expressions, and later evolved into
an enabling technique for networkmanagement [8, 13, 26, 36,
37] and network veri�cation [17, 43, 62]. What sets fauré-log
apart is the support for incomplete information (e.g., c-tables)
and new analysis techniques (e.g., query containment).
Partial representation. One strategy to address the scala-
bility, performance, and feature coverage challenges in net-
work analysis is to approximate the entire network state by
some forms of partial representation. Prior work includes
specialized data structure [19] tailored to speci�c veri�cation
task [6] or network topology [47]. In contrast, the c-tables
at the heart of fauré form a general representation system
for incomplete information: c-tables can be queried by ar-
bitrary fauré-log programs, and the answer can always be
represented by another c-table.
Incremental computation. Another commonly used strat-
egy to scale analysis is incremental veri�cation that avoids
exhaustive search. Notable examples include INCV [62] that
leverages generic engine (e.g., di�erential datalog), and Jin-
jing [57] that exploits practical heuristics. Key to these tools
is locating a (drastically smaller) subset of the network state
that is relevant to constraint checking. In contrast, fauré’s
relative-complete veri�cation uses constraint subsumption, a
reasoning process that entirely eliminates the need to access
network state.

8 CONCLUSION
This paper argues for a partial approach to network analysis
when our knowledge of the network is uncertain or un-
available, a signi�cant departure from the de-facto complete
scheme. Central to partial analysis is the notion of loss-less
modeling that accurately models network uncertainty and
relative-complete veri�cation that reaches an inconclusive
result only when more information is absolutely needed.
As a realization of this vision, we present fauré, a prelimi-
nary design in which, a datalog extension called fauré-log is
developed to access and manipulate partial network states,
various static analysis is combined with fauré-log evaluation
to reason about incomplete network information. Practical
implementation of fauré and encouraging evaluation are also
presented.
Acknowledgments.We thank theHotNets reviewerswhose
feedback helped improve this paper. This work was sup-
ported by National Science Foundation Award CNS-1909450.

11

recap — partial analysis
classical network analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

a departure from the
complete approach

loss-less modeling

query

uncorrupted answeruncertain environments

relative-complete
verification

query

correct answerpartial knowledge

“don’t know, need more information”

12

recap — realization
classical network analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

Fauré

loss-less modeling

Fauré-log

uncorrupted answeruncertain environments
as c-tables

relative-complete
verification

Fauré-log

correct answerpartial knowledge
as fauré-log

“don’t know, need more information”

12

recap — realization
classical network analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

Fauré

loss-less modeling

Fauré-log

uncorrupted answeruncertain environments
as c-tables

relative-complete
verification

Fauré-log

correct answerpartial knowledge
as fauré-log

“don’t know, need more information”

query c-tables

12

recap — realization
classical network analysis

comprehensive
evaluation

query

decisive answerdefinite knowledge
of the network

Fauré

loss-less modeling

Fauré-log

uncorrupted answeruncertain environments
as c-tables

relative-complete
verification

Fauré-log

correct answerpartial knowledge
as fauré-log

“don’t know, need more information”

query c-tables

simplify static analysis

12

thank you
https://github.com/ravel-net/Faure

