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from datalog to faure-log

datalog fauré-loqg
H(u) [ (Ari=1Qi)A(AMi=1Ci) ] 21—
e H(u) = Bi(ui),***,Ba(Un)- [Bi(ui)[@1],*+*,Ba(Un)[Pn],
(rules g) Cooees Co.
semantics g(I) = {U(u)| V(ui)€EI}, I isa database over schema R
notions and definitions
u; (free tuples) contains symbols in var (q) and dom(R)

dom(R) (attribute

. constants constants U {x,V,Z,..
domain over schema R) {x,9,2,..}

U (valuation) U: var(g)—-dom(R) (i.e.,{x,v,z,..} » constants U {X,V,Z,..})

var (q) (variables) {X,V,2,.}
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I 3 |x=0
2 3 |y=I
) 2 4 |y=0
recursive fauré-log
/* reachability query */
R(f,n1,n;)[@Q] :- F(f,n:,n3)[QP].
R(f,n1,n2) [PeAPr] :— F(£,n;1,0n3)[QPr], R(Ef,n3,07)[Pr].
R |src dest
| 2 [x=I
|5 [x=1Ay=1az=1
| 5 |X=0AZ=I
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|5 |%=1Ay=0
2 3 |y=I
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-----

failure patterns over R

Ti(£,n,n2) [QA X+§+2Z2=1] := R(f,n,,nz)[Q],X+y+2=1.

% reachability under 2-1link failure

T2(£,2,5) [N §=0] :- T:(£,2,5)[@], ¥=0. %
reachability between 2 and 5 under 2-link
failure, one of the failure must be (2,3)

T3(£,1,n2)[Q A §+2<2] :- R(f,1,n2)[Q], §+2<2. %
reachability to 1 with at least 1-1link failure

— primary

R ‘src dest‘
12 [x=]
| 5 [x=1Ay=IAZ=I
| 5 |X=0AZ=I
| 5 |x=0AZ=0
| 5 [x=1Ay=0
2 3 |y=I
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category (i) test: using only constraints

Cs U Cp

T, T2

!

» “T| true”

subsumption

l“Tz don’t know”

Cs

80, 334, 7000

Mkt. I—(
R&D. I—(

)—|CS
)—|GS

constraint subsumpti

T

e o Jo—cs
R&D. I—O C)—|GS

on
>

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

Mkt traffic to the critical server CS
to go through a firewall
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p#7000.

T, T2

!
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» “T| true”

constraint as
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query (panic)
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category (i) test:

Cs U Cp

Cs

80, 334, 7000

Mkt.l—( )—|CS
ol o

panic - Vs(X,Y,P)

VS(}_{rer) : - R(}_{IYIE_)) ’
Fw(XxX,V).

using only constraints

T, T2

!

subsumption > “T) true”

l“Tz don’t know”

e o Jo—cs
R&D. I—O C)—|GS

T

panic :- R(Mkt,CS,p),

program containment ~Fw (Mkt, CS)

Vs(X,7,P) :- R(Z79+D),

f‘—””’//,

p#7000. '

D#80,p#344, violation of T| implies violation of Cs




T, T2

!

subsumption

Cs U Cp

» “T| true”

Cs Vpi1,p2. p1and p2 are two constraint
Mkt'l_( 80, 334. 7000 )_lcs programs, then p12p:2 (p1 contains/
implies p2) if applying p1 (i.e., faure-log
valuation) to the “instance” of p: yeilds
R&D.I—( )—|GS panic
panic :- Vs(X,Y,P)
VS(XIYIP) e R(XIYIp)I ) panic O R(Mktlcslp)l
~Fw(%,7) program containment S ~Fw (Mkt, CS)
Vs(X,¥,P) :- Y /
b#80,p#344, violation of T| implies violation of Cs
p#7000.




category (ii) test: using constraints & updates
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T2: R&D traffic to all servers to
pass through a load balancer.
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R&D.

Mkt
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ite +
| rewrite

subsumption

) “TZ”

T2
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-Lb(R&D, V) .

incorporated into T by rewrites




category (ii) test: using constraints & updates

l“Tz don’t know”

ite +
,| rewrite: > “T,”
subsumption

T2
panic :- R(R&D,¥y,7000),

-Lb(R&D, V) .

incorporated into T by rewrites

T2 /v aaq (R&D,GS) to LB */
Lb(R&D,GS) . i
Lbi(X,¥) :- Lb(X,¥)

/* delete (Mkt,CS) LB */
Lb2(X,¥):- Lbi(X,¥)[X#FMkt]
Lbz(%X,y¥) :- Lbi(X,¥)[J#CS]

/*panic after updates */
panic :- R(R&D,¥y,7000),
—“Lb2(R&D, V)




updates:

Mkt.

Cib | |

panic :- Vt(x,VY,p)

Vt(X,CS,p) :-
R(%X,CS,p),X#Mkt, X#R&D.

category (ii) test: using constraints & updates

l“Tz don’t know”

rewrite +
subsumption

) “TZ”

T)

:~ R(R&D,¥,7000),
-Lb(R&D,¥) .

panic

/* add (R&D,GS) to LB */
Lb(R&D,GS). _
Lbi(X,¥) :- Lb(X,¥)

/* delete (Mkt,CS) LB */
Lb2(X,¥):- Lbi(X,¥)[X#FMkt]
Lbz(%X,y¥) :- Lbi(X,¥)[J#CS]

/*panic after updates */
panic :- R(R&D,¥y,7000),
—“Lb2(R&D, V)




category (ii) test: using constraints & updates

l“Tz don’t know”

rewrite +

subsumption

updates:

Mkt.

Cib |
panic :- Vt
Vt(%,CS,P)

R(x,C5,p),X

(X,Y/P)

#Mkt , R#R&D.

subsumes

) “TZ”

T)

panic :- R(R&D,¥y,7000),
-Lb(R&D, V) .

/* add (R&D,GS) to LB */
Lb(R&D,GS). _
Lbi(X,¥) :- Lb(X,¥)

/* delete (Mkt,CS) LB */
Lb2(X,¥):- Lbi(X,¥)[X#FMkt]
Lbz(%X,y¥) :- Lbi(X,¥)[J#CS]

/*panic after updates */
panic :- R(R&D,¥y,7000),
—“Lb2(R&D, V)




Cs U Cp

updates

l“Tz don’t know”

rewrite +
subsumption

) “TZ’,

updates:

Mkt. I—(

Q~

M~ M~ i~
Q~

given a constraint C and an update U,

incorporate U into C by rewriting C to
C':C holds after the update U iff C’
holds before the update

Lb(R&D,GS) . ]

Lbi(X,¥) :- Lb(X,¥)
subsumes /* delete (Mkt,CS) LB */
e Lb(%,¥)t- Lb1(X,¥)[&#MKL]

Lb2(%X,¥) :- Lbi1(X,Vy)[J#CS]

/*panic after updates */

panic :- R(R&D,¥y,7000),

-Lb, (R&D, ¥)




preliminary result

practical implementation in SQL
= shallow embedding of faure-log in PostgreSQL + Z3

evaluation

= realistic topology (inferred from BGP announcements)

= synthetic link failures
= representative queries

= g4-qs (all pair-wise reachability), qe-qs (various failure patterns)

IOI4—OI5| 96 I

q7 | qs
#prefix I sql I sql Z3 #tuples I sql Z3 #tuples I sql Z3 #tuples
1000 0.625s [ 0.85s(0.11%) | 796.35s | 42425 0.08s(22.86%) | 0.27s 16 0.15s(1.17%) | 12.64s 828
10000 | 5.75s | 8.96s - 418224 | 0.275(7.33%) |3.41s | 194 1.85(1.27%) | 137.05s | 8706
100000 f 54.85s 113.48s 4435862 | 1.66s(6.18%) | 25.22s | 1387 34.67s(1.71%) | 1941.04s | 86360
922067 | 816.4s | 4169.02s 46503247 | 11.1s(3.71%) | 288.17s | 16490 267.05s 858130




recap — partial analysis

classical nebtworlke ah&ijsis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

a departure from the query
com[pi.e&e approm:h l

uncertain environments —>|loss-less modeling > uncorrupted answer

query

l

relative-complete
verification

partial knowledge > » correct answer

v

“don’t know, need more information”




recap — realization

classical nebtworlke ah&ivsis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

Foure Fauré-log

l

—>| loss-less modeling f=———> uncorrupted answer

uncertain environments
as c-tables

Faure-log

l

partial knowledge relative-complete
as faure-log verification

» correct answer

v

“don’t know, need more information”




recap — realization

classical nebtworlke ahatjsis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

Foure Fauré-log

|

—>| loss-less modeling f=———> uncorrupted answer

uncertain environments
as c-tables

Faure-log

l

partial knowledge relative-complete
as faure-log verification

» correct answer

v

“don’t know, need more information”




recap — realization

classical nebworle ahai.jsi,s query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

Foure Fauré-log

|

—>| loss-less modeling f=———> uncorrupted answer

uncertain environments
as c-tables

Faure-log

| p—

partial knowledge relative-complete
as faure-log verification

¥» correct answer

v

“don’t know, need more information”




thank you

https://github.com/ravel-net/Faure




