Fauré: a Partial Approach to Network Analysis

Fangping Lan, Bin Gui, and <u>Anduo Wang</u> Temple University

HotNets 2021, Nov 11

[NSDI 20] Tiramisu: Fast Multilayer Network Verification. [SIGCOMM'02] Route oscillations in I-BGP with route reflection. [HotNets'20] Solver-Aided Multi-Party Configuration. [NSDI'15] General Approach to Network Configuration Analysis. [SIGCOMM'16] Fast Control Plane Analysis Using an Abstract Representation. [TON'02] The Stable Paths Problem and Interdomain Routing. [SIGCOMM'19] Validating Datacenters at Scale. [CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks. [NSDI 13] Real Time Network Policy Checking Using Header Space Analysis [HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time [NSDI 15] Checking Beliefs in Dynamic Net- works. [POPL 16] Scaling Network Verification Using Symmetry and Surgery [NSDI 20] Plankton: Scalable network config- uration verification through model checking [IEEE Networks 05] Modeling the routing of an autonomous system with C-BGP. [INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks [SIGCOMM 19] Safely and Automatically Updating In-Network ACL Configurations with Intent Language. [INFOCOM 05] On static reachability analysis of IP networks [SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a Global WAN [HotNets 20] Incremental Network Configuration Verification [NSDI 20] APKeep: Realtime Verification for Real Networks

[NSDI 20] Tiramisu: Fast Multilayer Network microsoft.com/en-us/research/project/network-verification/ Verification. Microsoft Research Our research \sim Programs & events \checkmark Blogs & podcasts \sim About \sim Sign up: Resea [SIGCOMM'02] Route oscillations in I-BGP with route reflection. [HotNets'20] Solver-Aided Multi-Party Configuration. [NSDI'15] General Approach to Network Configuration Analysis. [SIGCOMM'16] Fast Control Plane Analysis Using an Abstract Representation. [TON'02] The Stable Paths Problem and Interdomain Routing. [SIGCOMM'19] Validating Datacenters at Scale. [CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks. **Network Verification** [NSDI 13] Real Time Network Policy Checking Using Header Space Analysis [HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time [NSDI 15] Checking Beliefs in Dynamic Net- works. [POPL 16] Scaling Network Verification Using Symmetry and Surgery [NSDI 20] Plankton: Scalable network config- uration verification through model checking [IEEE Networks 05] Modeling the routing of an autonomous system with **Publications** Overview C-BGP. [INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-Networks need to run reliably, efficiently, and without users noticing any problems, even as they Manipulating MPLS Networks tools that improve the functioning of large-scale datacenter networks. [SIGCOMM 19] Safely and Automatically Updating In-Network ACL Configurations with Intent Language. [INFOCOM 05] On static reachability analysis of IP networks [SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a Global WAN [HotNets 20] Incremental Network Configuration Verification [NSDI 20] APKeep: Realtime Verification for Real Networks

[NSDI 20] Tiramisu: Fast Multilayer Network Verification.

[SIGCOMM'02] Route oscillations in I-BGP route reflection.

[HotNets'20] Solver-Aided Multi-Party Configuration.

[NSDI'15] General Approach to Network Configuration Analysis.

[SIGCOMM'16] Fast Control Plane Analysis

Using an Abstract Representation.

[TON'02] The Stable Paths Problem and Interdomain Routing.

[SIGCOMM'19] Validating Datacenters at Scale.

[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks.

with

[NSDI 13] Real Time Network Policy Checking Using Header Space Analysis

[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time [NSDI 15] Checking Beliefs in Dynamic Net- works.

[POPL 16] Scaling Network Verification Using Symmetry and Surgery [NSDI 20] Plankton: Scalable network config- uration verification through model checking

[IEEE Networks 05] Modeling the routing of an autonomous system with C-BGP.

[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks

[SIGCOMM 19] Safely and Automatically Updating In-Network ACL Configurations with Intent Language.

[INFOCOM 05] On static reachability analysis of IP networks [SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical

Configuration Verifier on a Global WAN

[HotNets 20] Incremental Network Configuration Verification [NSDI 20] APKeep: Realtime Verification for Real Networks

••• •••

RELATED TOPICS Blog: Aligning Your Technology 05//12//17 egy with Your Business Stra **NETWORK VERIFICATION WITH** microsoft.com/en-us/research/pro Blog Catchnoint VERIFLOW Microsoft Blog: Getting to AWS S3 Author Blog: Cisco ThousandEves PETER WELCHER architect, Operations Technical Adviso Blog: NetBeez 2021 Update Did my Networking Field Day (#NFD13) blog about Forward Networks (@FwdNetworks) catch your eye? Do you need to verify that changes won't break your network? Or that there are no loopholes in your security? Forward Networks defined a somewhat new network and security tool category with its announcement at #NFD13. Specifically, "Network Assurance" — making sure your network and changes will meet you specifications of correct behavior. See the blog I wrote for more about Forward Networks **Network Verification** Half-Day Tutorial: Network Verification SIGCOMO Monday 17th August, Afternoon Session 2015**Presenters** Home George Varghese, Microsoft Research **Conference click to** Nikolaj Bjorner, Microsoft Research expand contents **Tutorial location**

network analysis

network analysis

complete network analysis

a partial approach

a partial approach

loss-less modeling

modeling primary 5 2 backup \rightarrow \rightarrow \rightarrow . . . F node node F node node F node node forwarding 3 2 3 tables 3 4 2 3 2 3 3 4 2 3 4 • • • 5 5 4 5 5 4 4 (reachability) query src dest R src dest R src dest R 2 3 3 5 3 4 • • •

4

4

I 5 2 3

2

5

3

4

2

2

• • •

2

• • •

4

3

. . .

loss-less modeling

difference (between regular- and c- tables) not visible to the query

loss-less modeling

difference (between regular- and c- tables) not visible to the query

loss-less modeling with SQL?

difference (between regular- and c- tables) not visible to the SQL

loss-less modeling with SQL?

all definite instances (regular tables) partial representation (c-tables) Rep . . . SQL extended SQL Rep . . .

\checkmark ad hoc data retrieval

× static analysis

loss-less modeling with fauré-log

\checkmark static analysis

from datalog to fauré-log

	datalog	fauré-log
syntax (rules q)	$H(u) := B_1(u_1), \cdots, B_n(u_n).$	$\begin{array}{l} H(u)[(\wedge^{n_{i=1}}\varphi_{i})\wedge(\wedge^{m_{i=1}}C_{i})]:\\ B_{1}(u_{1})[\varphi_{1}],\cdots,B_{n}(u_{n})[\varphi_{n}],\\ C_{1},\cdots,C_{m}. \end{array}$
semantics	$q(\mathbf{I}) = \{\upsilon(u) \mid \upsilon(u_i) \in \mathbf{I}\}, \mathbf{I}$ is	s a database over schema R

notions and definitions

ui (free tuples)	contains symbols in var(q) and dom(dom(R)				
dom(R) (attribute domain over schema R)	constants	constants U {x̄,ȳ,z̄,}				
υ (valuation)	U: var(q)→dom(R) (i.e.,{x,y,z	$z,\} \rightarrow constants U \{\bar{x}, \bar{y}, \bar{z},\}$				
var(q) (variables)	{x,y,z,}					

failure patterns over R	R	src o	dest	
$T_1(f,n_1,n_2)[\phi \wedge \bar{x}+\bar{y}+\bar{z}=1] :- R(f,n_1,n_2)[\phi], \bar{x}+\bar{y}+\bar{z}=1.$ % reachability under 2-link failure		Ι	2	x =I
$T_2(f,2,5)[\phi \wedge \bar{y}=0] :- T_1(f,2,5)[\phi], \bar{y}=0.$		Ι	5	ϫ =Ι∧ӯ=Ι∧ Ξ=Ι
reachability between 2 and 5 under 2-link		I	5	x=0∧z=I
failure, one of the failure must be (2,3)		Ι	5	x=0∧z=0
T ₃ (f,1,n2)[Ø ∧ ÿ+z̄<2] :- R(f,1,n ₂)[Ø], ÿ+z̄<2. %		I	5	x =I∧ӯ=0
reachability to 1 with at least 1-link failure		2	3	ÿ =∣

example relative-complete verification

example relative-complete verification

example relative-complete verification

preliminary result

practical implementation in SQL

- shallow embedding of fauré-log in PostgreSQL + Z3

evaluation

- realistic topology (inferred from BGP announcements)
- synthetic link failures
- representative queries
 - q4-q5 (all pair-wise reachability), q6-q8 (various failure patterns)

	$q_4 - q_5$	q ₆			q ₇			q ₈		
#prefix	sql	sql	Z3	#tuples	sql	Z3	#tuples	sql	Z3	#tuples
1000	0.625s	0.85s(0.11%)	796.35s	42425	0.08s(22.86%)	0.27s	16	0.15s(1.17%)	12.64s	828
10000	5.75s	8.96s	-	418224	0.27s(7.33%)	3.41s	194	1.8s(1.27%)	137.05s	8706
100000	54.85s	113.48s	-	4435862	1.66s(6.18%)	25.22s	1387	34.67s(1.71%)	1941.04s	86360
922067	816.4s	4169.02s	-	46503247	11.1s(3.71%)	288.17s	16490	267.05s	-	858180

recap — partial analysis

recap — realization

recap — realization

recap — realization

thank you

https://github.com/ravel-net/Faure