Faure: a Partial Approach to
Network Analysis

Fangping Lan, Bin Gui, and Anduo VVang
Temple University

network analysis — significant progress

[NSDI 20] Tiramisu: Fast Multilayer Network
Verification.
[SIGCOMM’02] Route oscillations in I-BGP with
route reflection.
[HotNets’20] Solver-Aided Multi-Party
Configuration.
[NSDI’15] General Approach to Network
Configuration Analysis. \ "
[SIGCOMM’16] Fast Control Plane Analysis
Using an Abstract Representation.
[TON’02] The Stable Paths Problem and Interdomain Routing.
[SIGCOMM’19] Validating Datacenters at Scale.
[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool
for MPLS Networks.
[NSDI 13] Real Time Network Policy Checking Using Header Space
Analysis
[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time
[NSDI 15] Checking Beliefs in Dynamic Net- works.
[POPL 16] Scaling Network Verification Using Symmetry and Surgery
[NSDI 20] Plankton: Scalable network config- uration verification
through model checking
[IEEE Networks 05] Modeling the routing of an autonomous system with
C-BGP.
[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-
Manipulating MPLS Networks
[SIGCOMM 19] Safely and Automatically Updating In-Network ACL
Configurations with Intent Language.
[INFOCOM 05] On static reachability analysis of IP networks
[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical
Configuration Verifier on a Global WAN
[HotNets 20] Incremental Network Configuration Verification
[NSDI 20] APKeep: Realtime Verification for Real Networks

network analysis — significant progress

[NSDI 20] Tiramisu: Fast Multilayer Network

Verification.

[SIGCOMM’02] Route oscillations in I-BGP with

route reflection.

[HotNets’20] Solver-Aided Multi-Party

Configuration.

[NSDI’15] General Approach to Network

Configuration Analysis.

[SIGCOMM’16] Fast Control Plane Analysis
Using an Abstract Representation.

[TON’02] The Stable Paths Problem and Interdomain Routing.

[SIGCOMM’19] Validating Datacenters at Scale.

[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool
for MPLS Networks.

[NSDI 13] Real Time Network Policy Checking Using Header Space

Analysis

[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time

[NSDI 15] Checking Beliefs in Dynamic Net- works.

[POPL 16] Scaling Network Verification Using Symmetry and Surgery

[NSDI 20] Plankton: Scalable network config- uration verification

through model checking

[IEEE Networks 05] Modeling the routing of an autonomous system with

C-BGP.

[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks

[SIGCOMM 19] Safely and Automatically Updating In-Network ACL

Configurations with Intent Language.

[INFOCOM 05] On static reachability analysis of IP networks

[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical

Configuration Verifier on a Global WAN

[HotNets 20] Incremental Network Configuration Verification

[NSDI 20] APKeep: Realtime Verification for Real Networks

& microsoft.com/en-us/research/project/network-verification/

=D Microsoft | Research Our research Programs & events Blogs & podcasts About

Sign up: Resear

Network Verification

Overview Publications

Networks need to run reliably, efficiently, and without users noticing any problems, even as they
tools that improve the functioning of large-scale datacenter networks.

network analysis — significant progress

[NSDI 20] Tiramisu: Fast Multilayer Network

Verification.

[SIGCOMM’02] Route oscillations in I-BGP with

route reflection.

[HotNets’20] Solver-Aided Multi-Party

Configuration.

[NSDI’15] General Approach to Network

Configuration Analysis.

[SIGCOMM’16] Fast Control Plane Analysis
Using an Abstract Representation.

[TON’02] The Stable Paths Problem and Interdomain Routing.

[SIGCOMM’19] Validating Datacenters at Scale.

[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool
for MPLS Networks.

[NSDI 13] Real Time Network Policy Checking Using Header Space

Analysis

[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time

[NSDI 15] Checking Beliefs in Dynamic Net- works.

[POPL 16] Scaling Network Verification Using Symmetry and Surgery

[NSDI 20] Plankton: Scalable network config- uration verification

through model checking

[IEEE Networks 05] Modeling the routing of an autonomous system with

C-BGP.

[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks

[SIGCOMM 19] Safely and Automatically Updating In-Network ACL

Configurations with Intent Language.

[INFOCOM 05] On static reachability analysis of IP networks

[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical

Configuration Verifier on a Global WAN

[HotNets 20] Incremental Network Configuration Verification

[NSDI 20] APKeep: Realtime Verification for Real Networks

& microsoft.com/en-us/research/project/network-verification/

=D Microsoft | Research Our research Programs & events Blogs & podcasts About

Sign up: Resear

Network Verification

Half-Day Tutorial: Network Verification

Monday 17th August, Afternoon Session

Presenters

« Home
George Varghese, Microsoft Research

Conference click to
expand contents

Nikolaj Bjorner, Microsoft Research r

Tutorial location

e

[NSDI 20] Tiramisu: Fast Multilayer Network

Verification.

[SIGCOMM’02] Route oscillations in I-BGP with

route reflection.

[HotNets’20] Solver-Aided Multi-Party

Configuration.

[NSDI’15] General Approach to Network

Configuration Analysis.

[SIGCOMM’16] Fast Control Plane Analysis
Using an Abstract Representation.

[TON’02] The Stable Paths Problem and Interdomain Routing.

[SIGCOMM’19] Validating Datacenters at Scale.

[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool
for MPLS Networks.

[NSDI 13] Real Time Network Policy Checking Using Header Space

Analysis

[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time

[NSDI 15] Checking Beliefs in Dynamic Net- works.

[POPL 16] Scaling Network Verification Using Symmetry and Surgery

[NSDI 20] Plankton: Scalable network config- uration verification

through model checking

[IEEE Networks 05] Modeling the routing of an autonomous system with

C-BGP.

[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks

[SIGCOMM 19] Safely and Automatically Updating In-Network ACL

Configurations with Intent Language.

[INFOCOM 05] On static reachability analysis of IP networks

[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical

Configuration Verifier on a Global WAN

[HotNets 20] Incremental Network Configuration Verification

[NSDI 20] APKeep: Realtime Verification for Real Networks

05//12//17

NETWORKVERIFICATION WITH
VERIFLOW

3 Author
nl
y PETERWELCHER

Architect, Operations Technical Advisor

Blog: Aligning Your Technology
Strategy with Your Business Strategy

& microsoft.com/en-us/research/pr St

B Microsoft |

Blog: Getting to AWS S3

Blog: Cisco ThousandEyes

Blog: NetBeez 2021 Update

Did my Networking Field Day (#NFD13) blog about Forward Networks (@FwdNetworks) catch your eye? Do you
need to verify that changes won'’t break your network? Or that there are no loopholes in your security?

Forward Networks defined a somewhat new network and security tool category with its announcement at

#NFD13. Specifically, “Network Assurance” — making sure your network and changes will meet your
specifications of correct behavior. See the blog | wrote for more about Forward Networks.

Network Verification

Half-Day Tutorial: Network Verification

Monday 17th August, Afternoon Session

Presenters

« Home

George Varghese, Microsoft Research

Conference click to
expand contents

Nikolaj Bjorner, Microsoft Research r

Tutorial location

-

[NSDI 20] Tiramisu: Fast Multilayer Network

Verification.

[SIGCOMM’02] Route oscillations in I-BGP with

route reflection.

[HotNets’20] Solver-Aided Multi-Party

Configuration.

[NSDI’15] General Approach to Network

Configuration Analysis.

[SIGCOMM’16] Fast Control Plane Analysis
Using an Abstract Representation.

[TON’02] The Stable Paths Problem and Interdomain Routing.

[SIGCOMM’19] Validating Datacenters at Scale.

[CoNEXT 20] AalWiNes: A Fast and Quantitative What-If Analysis Tool
for MPLS Networks.

[NSDI 13] Real Time Network Policy Checking Using Header Space

Analysis

[HotSDN 12] VeriFlow: Verifying Network-Wide Invariants in Real Time

[NSDI 15] Checking Beliefs in Dynamic Net- works.

[POPL 16] Scaling Network Verification Using Symmetry and Surgery

[NSDI 20] Plankton: Scalable network config- uration verification

through model checking

[IEEE Networks 05] Modeling the routing of an autonomous system with

C-BGP.

[INFOCOM 18] Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks

[SIGCOMM 19] Safely and Automatically Updating In-Network ACL

Configurations with Intent Language.

[INFOCOM 05] On static reachability analysis of IP networks

[SIGCOMM 20] Accuracy, Scalability, Coverage: A Practical

Configuration Verifier on a Global WAN

[HotNets 20] Incremental Network Configuration Verification

[NSDI 20] APKeep: Realtime Verification for Real Networks

05//12//17

NETWORKVERIFICATION WITH
VERIFLOW

3 Author
nl
y PETERWELCHER

Architect, Operations Technical Advisor

Blog: Aligning Your Technology
Strategy with Your Business Strategy

& microsoft.com/en-us/research/pr St

B Microsoft |

Blog: Getting to AWS S3

Blog: Cisco ThousandEyes

Blog: NetBeez 2021 Update

Did my Networking Field Day (#NFD13) blog about Forward Networks (@FwdNetworks) catch your eye? Do you
need to verify that changes won'’t break your network? Or that there are no loopholes in your security?

Forward Networks defined a somewhat new network and security tool category with its announcement at

#NFD13. Specifically, “Network Assurance” — making sure your network and changes will meet your
specifications of correct behavior. See the blog | wrote for more about Forward Networks.

Network Verification

Half-Day Tutorial: Network Verification

Monday 17th August, Afternoon Session

Presenters
ACM SIGCOMM 2021 TUTORIAL: Introduction to :
Network Verification
| i Tutorial Program —

The tutorial has an associated Slack channel for discussions. Click on the link below to visit it. If you're asked to sign in, use the
workspace name "sigcomm.slack.com® to sign up or sign in.

Go to Tutorial Slack channel

(O\ Filter items...]

Friday, August 27th 13:00-17:00 (UTC-4, New York), 19:00-23:00 (UTC+2, Paris)

1:00 bm - 2:15 bm Session |

network analysis

reachability,
multi-path consistency,
convergence. ..

enterprise,
private WAN:S,
inter-domain. ..

network

query

l

analyzer

» answer

guarantee,
bug, ...

network analysis

reachability,

enterprise,
private WAN:S,
inter-domain. ..

network

query multi-path consistency,

l convergence. ..

testing, simulation,
model checking ...

» answer

guarantee,
bug, ...

complete network analysis

classical formal analysis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

challenges with complete analysis

classical formal analysis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

query

‘C{‘Z?o ntrol l
proPretoce)

comprehensive

(data [cane evaluation
a

» decisive answer

challenges with complete analysis

definite knowledge

classical formal analysis

query

l

of the network

uncertain environment

‘C{‘Z control I
pro =

(data plane
at €

comprehensive
evaluation

query

l

repeated analysis?

» decisive answer

» decisive answer

challenges with complete analysis

definite knowledge

classical formal analysis

query

l

of the network

uncertain environment

control |

(data plane
at €

comprehensive
evaluation

query

l

repeated analysis?

» decisive answer

query

l

comprehensive
evaluation

» decisive answer

» decisive answer

challenges with complete analysis

definite knowledge

classical formal analysis

query

l

of the network

uncertain environment

A controlI
sprotocal

(data plane
at €

att

unknowin informakion

comprehensive
evaluation

query

l

repeated analysis?

» decisive answer

query

l

stop working
entirely?

» decisive answer

» decisive answer

challenges with complete analysis

classical formal analysis

query

l

definite knowledge
of the network

comprehensive
evaluation

» decisive answer

uncertain environments =3

? » decisive answer

query

partial information >

? » decisive answer

a partial approach

classical formal analysis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

loss-less modeling query

l

uncertain environments —>»| partial model > uncorrupted answer

query

partial information > ! » decisive answer

a partial approach

classical formal analysis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

loss-less modeling query

l

uncertain environments —>»| partial model > uncorrupted answer

. . (s . query
relative-complete verification l
partial information » verification » correct answer

v

“don’t know, need more information”

loss-less modeling

query

l

uncertain environments =3

partial model

—> uncorrupted answer

/N

/N/'}

SN~—~7

F

node node

> > > > > > >

F |[node node F|node node
I 2 I 3
2 3 2 3
3 4 3 4
4 5 4 5

I
2
3
4

‘‘‘‘‘‘‘‘

L 4 * ¢¢ *
| — 2 — 3 —> 4 —> 5
~§ '1
forwarding
tables

—— primary
- ==+ backup

/N/'}

F

SN~—~7

node node

I

2 4
3 5
4 5

l(reaahabii&&vi

> > > > = =N
F |[node node F|node node
I 2 I 3
2 3 2 3
3 4 3 4
4 5 4 5
l | query
R [src dest R [src dest
| 2 | 3
| 3 | 4
| 4 | 5
| 5 2 3
2 3 2 4
2 4

R [src dest
| 3
| 5
2 4

- .
- o~

* .

| —»(2 —>» 3 —>' 4 —> 5

forwarding
tables

- .
- o~

—— primary
- ==+ backup

ﬂﬂﬂﬂﬂﬂﬂﬂ

X Y ST gy — primary
.. I - = =+ backup
e] a tuple can
> 0> >0> o> T3 c-table: occur only when
the condition is
F |[node node F|node node F |[node node F [node node -
I 2 I 3 I 3 I 2 %=
2 3 2 3 2 4 I 3 |x=0 1o mayaal
3 4 3 4 3 5 2 3 |y=I 0: failed
4 5 4 5 4 5 2 4 |[y=0
l lqu&rv l
R [src dest R |src dest R [src dest
| 2 | 3 | 3
| 3 | 4 | 5
| 4 | 5 2 4
| 5 2 3
2 3 2 4
2 4

ﬂﬂﬂﬂﬂﬂﬂﬂ

X Y ST gy — primary
.. I - = =+ backup
e] a tuple can
> 0> 0>0> = =N T3 occur only when
the condition is
F |[node node F|node node F |[node node F [node node -
I 2 I 3 I 3 I 2 %=
2 3 2 3 2 4 I 3 |x=0 1o mayaal
3 4 3 4 3 5 2 3 |y=I 0: failed
4 5 4 5 4 5 2 4 |[y=0
| v] |
R [src dest R |src dest R [src dest R |src dest
| 2 | 3 | 3 | 2 |x=I
| 3 | 4 | 5
| 4 | 5 2 4 | 5 IX=IAYy=I1AZ=]
| 5 2 3 | 5 |Xx=0AZ=I
2 3 2 4 | 5 [x=0AZ=0
2 4 | 5 [x=IAy=0
2 3 |y=I

> > > > = =N
F |[node node F|node node
I 2 I 3
2 3 2 3
3 4 3 4
4 5 4 5
| [
R |src dest R |src dest
| 2 | 3
| 3 | 4
| 4 | 5
| 5 2 3
2 3 2 4
2 4

ﬂﬂﬂﬂﬂﬂﬂﬂ

PR g VIR | = D .
| X509 Y 33 2 34 — 5 5 ——primary
.~ R/ - ==+ backup
el 03
F Inode node F |[node node
I 3 QQF I 2 |Ix=I
2 4 S | 3 |x=0
3 5 2 3 |y=I
4 5 2 4 |y=0
l iqu,er'j
R |src dest R |src dest
| 3 | 2 |Ix=I
| 5
2 4 | 5 |IX=IAYy=IAZ=]
| 5 |x=0AZ=I
| 5 |xX=0AZ=0
| 5 |X=1Ay=0
2 3 |y=I

all definite instances (regular tables) partial representation (c-tables)

difference (between regular- and c- tables) not visible to the query

all definite instances (regular tables) partial representation (c-tables)

difference (between regular- and c- tables) not visible to the

all definite instances (regular tables) partial representation (c-tables)

extended. SQL

| »ak § (well-known)

difference (between regular- and c- tables) not visible to the

all definite instances (regular tables) partial representation (c-tables)

| sQL :, extended SQL

ad hoc data retrieval static analysis

all definite instances (regular tables) partial representation (c-tables)

exbtended

‘ datalog | datalog?

ad hoc data retrieval static analysis

from datalog to faure-log

datalog fauré-loqg
H(u) [(Ari=1Qi)A(AMi=1Ci)] 21—
e H(u) = Bi(ui),***,Ba(Un)- [Bi(ui)[@1],*+*,Ba(Un)[Pn],
(rules g) Cooees Co.
semantics g(I) = {U(u)| V(ui)€EI}, I isa database over schema R
notions and definitions
u; (free tuples) contains symbols in var (q) and dom(R)

dom(R) (attribute

. constants constants U {x,V,Z,..
domain over schema R) {x,9,2,..}

U (valuation) U: var(g)—-dom(R) (i.e.,{x,v,z,..} » constants U {X,V,Z,..})

var (q) (variables) {X,V,2,.}

Faure-log queries

- -
——————————
- ~ - ~

I X, 2 \y—: 3 'Z—; 4 _: 5 :E:CT(TI;Y F |node node
IR ” 2 [x=
I 3 |x=0
2 3 |y=I
) 2 4 |y=0
recursive fauré-log
/* reachability query */
R(f,n1,n;)[@Q] :- F(f,n:,n3)[QP].
R(f,n1,n2) [PeAPr] :— F(£,n;1,0n3)[QPr], R(Ef,n3,07)[Pr].
R |src dest
| 2 [x=I
|5 [x=1Ay=1az=1
| 5 |X=0AZ=I
| 5 |Xx=0AZ=0
|5 |%=1Ay=0
2 3 |y=I

Faure-log queries

~ - ~

¢'Y y* ¢'f ~~A
| —> 2 2> 3 —> 4 —> &
. R/ - ==+ backup

))
4
))

failure patterns over R

Ti(£,n,n2) [QA X+§+2Z2=1] := R(f,n,,nz)[Q],X+y+2=1.

% reachability under 2-1link failure

T2(£,2,5) [N §=0] :- T:(£,2,5)[@], ¥=0. %
reachability between 2 and 5 under 2-link
failure, one of the failure must be (2,3)

T3(£,1,n2)[Q A §+2<2] :- R(f,1,n2)[Q], §+2<2. %
reachability to 1 with at least 1-1link failure

— primary

R ‘src dest‘
12 [x=]
| 5 [x=1Ay=IAZ=I
| 5 |X=0AZ=I
| 5 |x=0AZ=0
| 5 [x=1Ay=0
2 3 |y=I

relative-complete verification

query

l

partial knowledge » verification » correct answer

v

“don’t know, need more information”

relative-complete verification

network
knowledge

verifier » answer

l“don’t know’’ when more information is needed

relative-complete verification

query

network :
> verifier » answer
knowledge

l “don’t know”

»| verifier » answer

1 “don’t know”

relative-complete verification

network
knowledge

query

l

test (i)

l “don’t know”

» answer

> test (ii)

“don’t know”

» answer

> test (n)

—3» answer

v

stronger

example relative-complete verification

query
? » answer
l “don’t know”

> ? » answer

verification task

= invariants (T,T2) continue to
hold after updates

(market office.) (critical server)

Mkt. I—O ()_l CS
R&D. |_o O_l other teams

GS

= security team maintains Cs
= TE team maintains Cjp

(R&D office.) (general server)

example relative-complete verification

query

other ‘ _
) .~ subsumption » answer
constraints

l “don’t know”

> ? » answer

verification task

(market office.) (critical server)

Mkt. I—O ()_l CS
R&D. |_o O_l other teams

= invariants (T,T2) continue to
hold after updates

GS

= security team maintains Cs
= TE team maintains Cjp

(R&D office.) (general server)

example relative-complete verification

query

other ‘ _
) .~ subsumption » answer
constraints

l “don’t know”

| rewrite +
subsumption

» answer

verification task

(market office.) (critical server)

Mkt. I—O ()_l CS
R&D. |_o O_l other teams

= invariants (T,T2) continue to
hold after updates

GS

= security team maintains Cs
= TE team maintains Cjp

(R&D office.) (general server)

category (i) test: using only constraints

Cs U Cp

T, T2

!

» “T| true”

subsumption

l“Tz don’t know”

Cs

80, 334, 7000

Mkt. I—(
R&D. I—(

)—|CS
)—|GS

constraint subsumpti

T

e o Jo—cs
R&D. I—O C)—|GS

on
>

packets to all the servers, must use
one of the three ports 80, 334 and
7000, and must pass through a
firewall

Mkt traffic to the critical server CS
to go through a firewall

category (i) test: using only constraints

Cs U Cp

80, 334, 7000

R&D. I—(

panic :- Vs(X,Y,P)
VS(XIYIP) : - R(XIYIE_))I
Fw(X,V).

VS(XIYIp) : = R(}_(IYIp) ’
p#80,p#344,
p#7000.

T, T2

!

subsumption

» “T| true”

constraint as
0-ary fauré-log _|
query (panic)

l“Tz don’t know”

e o Jo—cs
R&D. I—() C)—|GS

:— R(Mkt,CS,p),
“Fw(Mkt,CS)

T

panic

I

category (i) test: using only constraints

T, T2

!

Cs U Cp subsumption » “T) true”

l“Tz don’t know”

Cs T

)—| CS Mkt. I—()—m—()—l CS
R&D. I—()—|GS R&D. I—O C)—|GS

panic :—- Vs(X,VY,p)

80, 334, 7000

Vs(X,7,P) :- R(X,¥,P), panic :- R(Mkt,CS,p),
“Fw(X,¥) . -~Fw(Mkt,CS)
VS(XIYIp) e R(}—(IYIp)I

p#80,p#344,
p#7000.

category (i) test: using only constraints

T, T2

!

Cs U Cp

subsumption

» “T| true”

80, 334, 7000

R&D. I—(

panic :—- Vs(X,VY,p)

VS(XIYIP) : - R(XIYIE_)) ’
Fw(X,V).

l“Tz don’t know”

pr@gram containment

T

VS(XIYIp) : = R(}_(IYIp) ’
p#80,p#344,
p#7000.

Mkt.

R&D.

panic
>

I_(

e

|_<

D ()—|GS

:— R(Mkt,CS,p),
“Fw(Mkt,CS)

category (i) test:

Cs U Cp

Cs

80, 334, 7000

Mkt.l—()—|CS
ol o

panic - Vs(X,Y,P)

VS(}_{rer) : - R(}_{IYIE_)) ’
Fw(XxX,V).

using only constraints

T, T2

!

subsumption > “T) true”

l“Tz don’t know”

e o Jo—cs
R&D. I—O C)—|GS

T

panic :- R(Mkt,CS,p),

program containment ~Fw (Mkt, CS)

Vs(X,7,P) :- R(Z79+D),

f‘—””’//,

p#7000. '

D#80,p#344, violation of T| implies violation of Cs

T, T2

!

subsumption

Cs U Cp

» “T| true”

Cs Vpi1,p2. p1and p2 are two constraint
Mkt'l_(80, 334. 7000)_lcs programs, then p12p:2 (p1 contains/
implies p2) if applying p1 (i.e., faure-log
valuation) to the “instance” of p: yeilds
R&D.I—()—|GS panic
panic :- Vs(X,Y,P)
VS(XIYIP) e R(XIYIp)I) panic O R(Mktlcslp)l
~Fw(%,7) program containment S ~Fw (Mkt, CS)
Vs(X,¥,P) :- Y /
b#80,p#344, violation of T| implies violation of Cs
p#7000.

category (ii) test: using constraints & updates

l“Tz don’t know”

| rewrite +
subsumption

) “TZ”

e
o I

T)

T2: R&D traffic to all servers to
pass through a load balancer.

category (ii) test: using constraints & updates

l“Tz don’t know”

rewrite +
subsumption

) “TZ”

T2
panic :- R(R&D,¥y,7000),

-Lb(R&D, V) .

category (ii) test: using constraints & updates

updates:

MktF—%.,-

Cib

R&D.

Mkt

R&D.

|_<
|_<
|_<

l“Tz don’t know”

ite +
| rewrite

subsumption

) “TZ”

T2

panic :- R(R&D,¥y,7000),
-Lb(R&D, V) .

incorporated into T by rewrites

category (ii) test: using constraints & updates

l“Tz don’t know”

ite +
,| rewrite: > “T,”
subsumption

T2
panic :- R(R&D,¥y,7000),

-Lb(R&D, V) .

incorporated into T by rewrites

T2 /v aaq (R&D,GS) to LB */
Lb(R&D,GS) . i
Lbi(X,¥) :- Lb(X,¥)

/* delete (Mkt,CS) LB */
Lb2(X,¥):- Lbi(X,¥)[X#FMkt]
Lbz(%X,y¥) :- Lbi(X,¥)[J#CS]

/*panic after updates */
panic :- R(R&D,¥y,7000),
—“Lb2(R&D, V)

updates:

Mkt.

Cib | |

panic :- Vt(x,VY,p)

Vt(X,CS,p) :-
R(%X,CS,p),X#Mkt, X#R&D.

category (ii) test: using constraints & updates

l“Tz don’t know”

rewrite +
subsumption

) “TZ”

T)

:~ R(R&D,¥,7000),
-Lb(R&D,¥) .

panic

/* add (R&D,GS) to LB */
Lb(R&D,GS). _
Lbi(X,¥) :- Lb(X,¥)

/* delete (Mkt,CS) LB */
Lb2(X,¥):- Lbi(X,¥)[X#FMkt]
Lbz(%X,y¥) :- Lbi(X,¥)[J#CS]

/*panic after updates */
panic :- R(R&D,¥y,7000),
—“Lb2(R&D, V)

category (ii) test: using constraints & updates

l“Tz don’t know”

rewrite +

subsumption

updates:

Mkt.

Cib |
panic :- Vt
Vt(%,CS,P)

R(x,C5,p),X

(X,Y/P)

#Mkt , R#R&D.

subsumes

) “TZ”

T)

panic :- R(R&D,¥y,7000),
-Lb(R&D, V) .

/* add (R&D,GS) to LB */
Lb(R&D,GS). _
Lbi(X,¥) :- Lb(X,¥)

/* delete (Mkt,CS) LB */
Lb2(X,¥):- Lbi(X,¥)[X#FMkt]
Lbz(%X,y¥) :- Lbi(X,¥)[J#CS]

/*panic after updates */
panic :- R(R&D,¥y,7000),
—“Lb2(R&D, V)

Cs U Cp

updates

l“Tz don’t know”

rewrite +
subsumption

) “TZ’,

updates:

Mkt. I—(

Q~

M~ M~ i~
Q~

given a constraint C and an update U,

incorporate U into C by rewriting C to
C':C holds after the update U iff C’
holds before the update

Lb(R&D,GS) .]

Lbi(X,¥) :- Lb(X,¥)
subsumes /* delete (Mkt,CS) LB */
e Lb(%,¥)t- Lb1(X,¥)[&#MKL]

Lb2(%X,¥) :- Lbi1(X,Vy)[J#CS]

/*panic after updates */

panic :- R(R&D,¥y,7000),

-Lb, (R&D, ¥)

preliminary result

practical implementation in SQL
= shallow embedding of faure-log in PostgreSQL + Z3

evaluation

= realistic topology (inferred from BGP announcements)

= synthetic link failures
= representative queries

= g4-qs (all pair-wise reachability), qe-qs (various failure patterns)

IOI4—OI5| 96 I

q7 | qs
#prefix I sql I sql Z3 #tuples I sql Z3 #tuples I sql Z3 #tuples
1000 0.625s [0.85s(0.11%) | 796.35s | 42425 0.08s(22.86%) | 0.27s 16 0.15s(1.17%) | 12.64s 828
10000 | 5.75s | 8.96s - 418224 | 0.275(7.33%) |3.41s | 194 1.85(1.27%) | 137.05s | 8706
100000 f 54.85s 113.48s 4435862 | 1.66s(6.18%) | 25.22s | 1387 34.67s(1.71%) | 1941.04s | 86360
922067 | 816.4s | 4169.02s 46503247 | 11.1s(3.71%) | 288.17s | 16490 267.05s 858130

recap — partial analysis

classical nebtworlke ah&ijsis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

a departure from the query
com[pi.e&e approm:h l

uncertain environments —>|loss-less modeling > uncorrupted answer

query

l

relative-complete
verification

partial knowledge > » correct answer

v

“don’t know, need more information”

recap — realization

classical nebtworlke ah&ivsis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

Foure Fauré-log

l

—>| loss-less modeling f=———> uncorrupted answer

uncertain environments
as c-tables

Faure-log

l

partial knowledge relative-complete
as faure-log verification

» correct answer

v

“don’t know, need more information”

recap — realization

classical nebtworlke ahatjsis query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

Foure Fauré-log

|

—>| loss-less modeling f=———> uncorrupted answer

uncertain environments
as c-tables

Faure-log

l

partial knowledge relative-complete
as faure-log verification

» correct answer

v

“don’t know, need more information”

recap — realization

classical nebworle ahai.jsi,s query

l

comprehensive

definite knowledge

» decisive answer

of the network evaluation

Foure Fauré-log

|

—>| loss-less modeling f=———> uncorrupted answer

uncertain environments
as c-tables

Faure-log

| p—

partial knowledge relative-complete
as faure-log verification

¥» correct answer

v

“don’t know, need more information”

thank you

https://github.com/ravel-net/Faure

