
Fauré: A Partial Approach to Network Analysis
Fangping Lan, Bin Gui

Temple University
Anduo Wang∗
Temple University

ABSTRACT
Formal analysis has been intensively studied (e.g., deep cus-
tomization and synergistic co-design) in the networking do-
main, but one assumption remains largely unexamined: there
is a complete evaluation that expects definite knowledge of
the task, and is expected to output a decisive result. This
paper argues for a “partial” approach, a departure from the
de facto, to network analysis in a practical environment with
uncertain events and limited visibility. Specifically, we seek
(1) loss-less modeling in which network uncertainty is ex-
plicitly handled without corrupting the querying capability;
and (2) complete verification relative to the level of infor-
mation available, which reaches an inconclusive result only
when more information is needed. As a realization of this
vision, we present fauré, a preliminary design in which a
datalog extension (called fauré-log) for incomplete informa-
tion is developed to enable loss-less modeling, and combined
with static analysis of pure datalog to implement example
relative-complete verifiers.

ACM Reference Format:
Fangping Lan, Bin Gui and Anduo Wang. 2021. Fauré: A Partial
Approach to Network Analysis. In The Twentieth ACMWorkshop on
Hot Topics in Networks (HotNets ’21), November 10–12, 2021, Virtual
Event, United Kingdom. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3484266.3487391

1 INTRODUCTION
Formal analysis has made significant progress in the net-
working domain in the past decade. A spectrum of methods
(simulation [18, 42], model checking [48], SMT solving [19],
etc) were adapted, benefiting networks ranging from enter-
prise networks and SDNs [32–34] to datacenters and private

∗Lead author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487391

WANs [30, 55, 59], and addressing tasks from basic reacha-
bility [58] to more advanced features (middleboxes, network
updates [55, 61], protocol interactions [1] etc). Underlying
all these successes is a common workflow — often taken for
granted — in which a comprehensive evaluation is performed
on an entirely known network. The critical assumption is
that the task is definite and the analysis result is decisive.
While this complete approach is salient in classical formal
analysis, it can be ill-fitted for networking.

First, formal analysis was originally designed for a single
definite input (e.g., hardware verification), but networking
often involves exponential number of states that can possibly
occur. A moderate sized control plane can result in a huge
number of data planes that easily exceed the capability of
highly optimized data plane verifiers [32, 33]. Failures — an
important aspect that must be factored into the verifier as
many important errors occur only under specific failures [20]
— can quickly blow up the search engine even on small topol-
ogy. Despite the many efforts — e.g., avoiding generating
individual data planes under failures [15, 20], abstracting
networks jointly controlled by multiple protocols [6, 20, 46]
— to treat the symptoms, existing models rarely include ex-
plicit constructs for the causes — uncertainty events such
as failures or network interactions that cause the problem.
Leaving out uncertainty is understandable due to limited
support in formal analysis, nevertheless, it can be a missed
opportunity for networking.
A second mismatch between the complete approach and

networking is that our visibility into a network is often lim-
ited. In the global Internet, the inability to obtain the BGP
configuration inputs from external domains leaves most at-
tempts to verify the global routing behavior futile [5, 16, 17,
21–23, 45, 50, 54, 57].While some argue that the public transit
has been in decline [4, 26, 28], the domain structure organized
around domains is unlikely to change any time soon [44, 52,
53], meaning that visibility into the inter-domain will remain
constrained. Even within a single domain, when manage-
ment is shared by multiple participants [12, 49], a complete
network view is unlikely due to performance concerns. In all
these cases, even when some aspects of the network are un-
known, it is desirable to implement some (perhaps weaker)
verification than stop working entirely.

Informed with these observations, we take a departure
from the de-facto complete analysis and propose a partial
approach for the networking environment. We seek to (1)
achieve accurate network modeling even with uncertainty

https://doi.org/10.1145/3484266.3487391
https://doi.org/10.1145/3484266.3487391
https://doi.org/10.1145/3484266.3487391

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Fangping Lan, Bin Gui and Anduo Wang

(e.g., arbitrary failures), which we call loss-less modeling; and
to (2) perform complete verification on networks that are
only partly known, which we call relative-complete verifica-
tion. More precisely, loss-less modeling seeks a representa-
tion for uncertain networks such that it assures sound and
complete reasoning like in the case of a definite network.
In relative-complete verification, the goal is to develop new
tests that fully use the available information such that if
the tests reach an indecisive conclusion, a more powerful
verification requiring more information is absolutely needed.

To illustrate the feasibility of our approach, we develop a
preliminary design called fauré, inspired by a representation
system in incomplete database called conditional table (or
c-table) [2, 3, 29, 51, 56]. C-tables use variables to represent
unknown values whose meaning are given by a condition
of boolean atoms: a single c-table models many possible net-
works (i.e. an uncertain network); more importantly, it is
loss-less in the sense that the difference between the c-table
and the possible instances it represents is not visible to (an
extended) relational algebra — any SQL query over a c-table
will produce exactly the same answer as on the correspond-
ing (possible) regular tables. Our first contribution is to turn
the useful algebraic tool of c-tables into a deductive one
that is more suitable for analysis. To this end, we develop
a datalog extension — a deductive counterpart of extended
SQL — to correctly reference and valuate the variables in
a c-table, forming our own partial specification language
called fauré-log.
Fauré-log supports loss-less modeling out-of-box: As we

show in reachability analysis under link failures, the fauré-
log gives a general (datalog-like) query interface to access
and manipulate the c-table representation of a partial net-
work state under a link failure pattern without introducing
visible corruption, that is, fauré-log query on a single partial
network is guaranteed to be equivalent to iteratively query-
ing all possible networks. By combining the new fauré-log
valuation with static analysis readily available in pure data-
log, fauré also lends itself to relative-complete verification:
As we show in the management of a network by multiple
teams, fauré-log enables us to develop two complete tests
relative to two levels of information visible to the verifier. In
the first level where only (the definition of the) constraints
are known, we formulate a test as constraint subsumption,
a datalog problem of program containment that can be fur-
ther automated by a novel reduction into query evaluation
in fauré-log; In the second level where the update is also
known, the update information is incorporated into the test
by a systematic constraint rewrite in fauré-log. A practical
implementation of fauré-log in PostgreSQL and encouraging
evaluation results on realistic forwarding configuration are
also presented.

2 FAURÉ OVERVIEW
Fauré is a partial network analysis toolkit with two loosely-
coupled components: loss-lessmodeling and relative-complete
verification. Loss-less modeling embodies a precise condition
that we believe should be satisfied in any meaningful model
of uncertain events or unknown information, that is, infor-
mation corruption introduced by the new partial expressions
should not be visible in reasonably constructed queries. We
achieve this by adopting c-tables — the relational structure
of incomplete database — as the data model, and developing
a general query language called fauré-log. Fauré-log extends
the classic datalog evaluation strategy to reference partial
networks represented in the c-tables. Using data plane veri-
fication under link failures as an example, we illustrate how
fauré-log offers loss-less modeling out-of-box.
In the relative-complete verification component, instead

of a single conclusive verifier, we implement two tests: the
weaker test will succeed whenever a decisive answer is
permitted by the least amount of information, and return
with “I don’t know” only when more information is needed.
When the additional information becomes known, the sec-
ond (stronger) test capable of processing it can be invoked.
As we show in policy-compliance checking during updates in
an enterprise network managed by multiple teams, we lever-
age query containment analysis readily available in datalog
to check policy when we only know the policy definition
itself; and exploit query rewrite to further incorporate net-
work updates when they become available. Notably, the new
fauré-log valuation strategy for c-tables reduces query con-
tainment in pure-datalog to query evaluation in fauré-log.

fauré-log modeling verification
c-tables ✓ ✓ ✓

constraint ✓

query evaluation ✓ ✓ ✓

update rewrite ✓

query containment ✓
Table 1: Fauré’s enabling techniques.

Table 1 summarizes the new techniques: fauré-log incorpo-
rates the c-tables by a new evaluation strategy (§ 3) and en-
ables loss-less modeling (§ 4). On top of fauré-log, constraint
as 0-ary queries over c-tables, constraint rewrite, and query
containment are combined to achieve relative-complete veri-
fication (§ 5).

3 FROM DATALOG TO FAURÉ-LOG
The data model of fauré is inspired by the c-table [2, 3, 29, 56],
a relational structure for incomplete information that is par-
ticularly attractive because it does not introduce corruption
visible to any SQL query — through a straightforward ex-
tension to the relational algebra. The algebraic extension,
however, does not give the clean semantics and valuation
strategies critical to network analysis. To this end, we de-
velop our own datalog extension call fauré-log.

Fauré: A Partial Approach to Network Analysis HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

C-table and Why SQL/pure-datalog Fall Short
A c-table allows variables to occur in the table entries and

introduces an additional column of conditions over the vari-
ables. The idea is to use the variables to denote information
with proper attributes but currently unknown, and to use the
conditions to characterize legitimate information. An exam-
ple is Pi in Table 2, where the first tuple says the destination
1.2.3.4 has a path that is either [ABC] or [ADEC], the second
tuple says a destination other than 1.2.3.4 uses path [ABE],
and the third says 1.2.3.6 uses [ADEC] no matter what (empty
condition). Depending on the instantiation of the variables,
Pi corresponds to many different regular network states, one
possible instance is P.

P dest path
1.2.3.4 [ABC]
1.2.3.5 [ABE]
1.2.3.6 [ADEC]

Pi dest path

1.2.3.4 x̄
x̄ = [ABC]∨
x̄ = [ADEC]

ȳ [ABE] ȳ,1.2.3.4
1.2.3.6 [ADEC]

C path cost
[ABC] 3
[ADEC] 4
[ABE] 3

Table 2: PATH is a regular database with regular tables P, C
(PATH={P, C}); PATH’ is a fauré database that includes a c-
table Pi (PATH’={Pi, C})

The c-tables can be queried by a straightforward extension
of SQL. For example, the join of two c-tables T1 and T2 can
be obtained by concatenating every tuple t1 ∈ T1 and t2 ∈ T2
and associating it with φ1 ∧ φ2 ∧ φ (t1, t2) where φ1 (φ2) is the
condition associated with t1 (t2), and φ (t1, t2) is a condition
that states the equality between join attributes in t1 and
t2. While convenient for ad-hoc data retrieval, the algebraic
approach of SQL is inadequate for program analysis (e.g.,
query containment in relative-complete verification 5). Thus
we argue for the deductive approach of datalog.

It turns out that datalog extension for c-tables is not read-
ily available and far less obvious. A specific difficulty is how
to evaluate a datalog-like program over a c-table. How to
map variables in the datalog program to the underlying do-
main of the c-tables which have variables in themselves?
To see why this is difficult and to prepare technically for
the development of fauré-log, we first review datalog and its
valuation following notions in [2, 9]. A datalog query q over
a (usual) database schema R is a finite collection of rules of
the form

H(u) : −B1 (u1), · · · , Bn (un). (1)
where Bi’s are relation (predicate) names in R, and H is a
relation not in R; and u and ui’s are free tuples that can
use either constants in the attribute domain of R (denoted
by dom) or variables (we use var(q) to denote all variables
appeared in q). The subexpression B1 (u1), · · · , Bn (un) is the
body of the rule, and H(u) is the head. A rule generates new
facts by variable valuation — a function (denoted by υ) from
var(q) to dom: if one can find values that hold for the body,

then one can derive the head. Thus, the meaning of a query
can be defined by variable valuations. Let q be a datalog
query given by the foregoing rules, and let I be a database
instance of R, the image (query result) of I under q is

q(I) = {υ (u) |υ is a valuation and υ (ui) ∈ I} (2)

1 q1: ANS(z) :- P('1.2.3.4',y), C(y,z). /* what is the path
cost for destination 1.2.3.4? */

2 q2: ANS(z)[φ∧ x='1.2.3.4'] :- Pi(x,y)[φ], C(y,z),
x='1.2.3.4'. /* equivalent query using explicit
comparison (=) */

3 q3: ANS(z)[φ] :- Pi('1.2.3.5',y)[φ], C(y,z). /* implicit
pattern matching over c-table */

Listing 1: First attempt: datalog query over c-tables

For example, running query q1 (in Listing 1) on data-
base PATH (in Table 2) gives q1 (PATH) = {⟨3⟩}. Observe that
a constant occurred in a free tuple produces implicit pat-
tern matching on the underlying domain (dom), which is
equivalent to explicit comparison in SQL (e.g.,P(′1.2.3.4′, y)
is equivalent to SELECT FROM P WHERE P.dest =′ 1.2.3.4′). Such
straightforward pattern matching no longer works once we
enter the domain of the c-tables.
Fauré-log and Evaluation over C-tables
We develop fauré-log by taking extra care in mediating

between variables in the (fauré-log) program and variables
in the referenced c-tables. These two types of variables play
critically different roles: variables in fauré-log are referenced
by usual x, y, z, · · · and are simply called variables, variables
representing unknown values in the c-tables are denoted
by x̄, ȳ, · · · and are called c-variables. To handle the new c-
variables, the underlying domain of c-tables is extended by
incorporating the c-variables into the usual attribute do-
main (of constants): the intuition is to treat the c-variables
as the usual constant values, only that they are currently
“unknown”. We call this new domain the c-domain, denoted
by domC. Similar to pure datalog, we define the fauré-log
query qF over c-tables with schema RF as a finite collection
of rules of the form

H(u)[(∧ni=1φi) ∧ (∧mi=1Ci)] : −
B1 (u1)[φ1], · · · , Bn (un)[φn], C1, · · · , Cm. (3)

here Bi’s are relations in RF; the u, ui’s are “free” tuples that
contain both regular variables and symbols (constants or c-
variables) in domC (e.g.,Pi (x, y), Pi (x, [ABC]), and Pi (1.2.3.4, x̄)

are all valid expressions); φi’s are conditions over domC; and
Ci’s are explicit comparisons (i.e.=, ! =, <, > etc) over domC

(e.g.,x̄ = [ABC],x! = 1.2.3.4). Observe that, while hidden in the
SQL extensions for c-tables [2, 3, 29], our syntax (equation 3)
explicitly reflects the manipulation of the conditions.

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Fangping Lan, Bin Gui and Anduo Wang

A fauré-log rule also generates new tuples from tuples
matching those in its body. For example, q2 generates {⟨3[x̄ =
[ABC]]⟩, ⟨4[x̄ = [ADEC]]⟩} (i.e. depending on the assignment to
x̄, the answer is 3 or 4 respectively). In this derivation, x / y
maps to 1.2.3.4 / x̄ in the c-domain. Note that q2 and q1 are
equivalent except that q2 uses explicit equality over variables
while q1 relies on implicit pattern matching. It is desirable to
also support such implicit pattern matching in fauré-log: for
example, in q3, Pi (1.2.3.5, y) should match the second tuple
in Pi, allowing q3 to derive the answer q3 (PATH’) = {⟨3⟩}.

Unlike the trivial pattern matching in regular tables (a con-
stant always matches itself, in fact υ only needs to be defined
for the datalog variables), in fauré-log, a constant matches
itself as well as a c-variable as long as it does not cause con-
tradiction in the condition, and a variable can match any
constants and c-variables in the c-domain. Formally, we ex-
tend theυ to the c-domain by the following rules: (1) fauré-log
variables are assigned to constants or c-variables (by simple
substitution like in υ); (2) a constant c is assigned to either
itself, or to a c-variable x̄ if c does not contradict x̄’s condition
(e.g.,P(1.2.3.5, y)maps to Pi (ȳ, [ABE])[ȳ , 1.2.3.4 ∧ ȳ = 1.2.3.5]).
We call this the c-valuation function, denoted by υC . Using
υC , query evaluation on c-tables take exactly the same form
as equation 2. Finally, without diving into details, we point
out that recursion can be incorporated into fauré-log using
the usual fixed point approach [2, 9], and the “not” modi-
fier can be added to mean non-derivable from the c-table as
in [7]. Both negation and recursion are particularly useful
for network analysis as we will see in § 4 and § 5.

4 LOSS-LESS MODELING

1 2 3 4 5 6
x y z u

1 2 3 4 5

 Ẋẋz

B̅ aȳ̅ C̅ D̅ a ̅b ̅c ̅d ̅α̅ β̅ γ ̅δ̅ ε̅

a ̅a ̅a ̅a ̅a ̅a ̅

z ̄ȳ

ȳ x ̄z ̄

x ̄

Figure 1: Fast rerouting under link failures: protected links
encoded by (x̄, ȳ, z̄)

F node node
1 2 x̄ = 1
1 3 x̄ = 0
2 3 ȳ = 1
2 4 ȳ = 0

· · ·

R source dest
1 2 x̄ = 1

· · ·

1 5 x̄ = 1 ∧ ȳ = 1 ∧ z̄ = 1
1 5 x̄ = 0 ∧ z̄ = 1
1 5 x̄ = 0 ∧ z̄ = 0
1 5 x̄ = 1 ∧ ȳ = 0
2 3 ȳ = 1

· · ·Table 3: F represents for all (possible) forwarding behaviors;
R represents reachability under combinations of failures.

This section presents loss-less modeling by reachability
analysis under link failures. Consider an excerpt of a fast
rerouting configuration inspired by [31] (Figure 1): The nodes
1, 2, 3, 4, 5 are abstract addressable routing/forwarding enti-
ties, the bold arrows between the nodes show the primary

links that we want to protect, and the dashed arrows are
backup links that will be used as a detour when failure occurs.
The many possible forwarding behaviors, due to arbitrary
failures, can be described in a single c-table once and for all.
As shown in the c-table F (Table 3): the schema F(node, node)

says packets arrived at the first node are to be forwarded
to the second; the three c-variables x̄, ȳ, z̄ ∈ {0, 1} denote the
state of the four protected links — 0 means the link fails
while 1 means normal.

1 /* reachability as recursive query */
2 q4: R(f,n1,n2)[φ] :- F(f,n1,n2)[φ].
3 q5: R(f,n1,n2)[φF ∧ φR] :- F(f,n1,n3)[φF], R(f,n3,n2)[φR].
4 /* examples of failure patterns */
5 q6: T1(f,n1,n2)[φ ∧ x̄ + ȳ + z̄=1] :- R(f,n1,n2)[φ], x̄ + ȳ + z̄

=1. % reachability under 2-link failure
6 q7: T2(f,2,5)[φ ∧ ȳ = 0] :- T1(f,2,5)[φ], ȳ=0. %

reachability between 2 and 5 under 2-link failure, one
of the failure must be (2,3)

7 q8: T3(f,1,n2)[φ ∧ ȳ + z̄<2] :- R(f,1,n2)[φ], ȳ + z̄<2. %
reachability to 1 with at least 1-link failure

Listing 2: Fauré-log offers intuitive and flexible
reachability analysis under failures for free

To perform reachability analysis under failures, we only
need to construct a fauré-log query that specifies the failure
pattern. For example, all pair-wise reachability analysis can
be computed by rules q4, q5 in Listing 2, which outputs an R

table (a fragment of which is) shown in Table 3. As shown by
more examples in Listing 2, fauré-log gives a flexible query
language for link failure patterns as conditions over the c-
variables (rules q6, q8), and nested queries (rules q6, q7 that
query the output of another query). Note that R, F in Table 3
are loss-less with respect to fauré-log: information that can
be queried (via fauré-log) from R, F are not distinguishable
from enumerating all the concrete data planes.

5 RELATIVE-COMPLETE VERIFICATION
We use a running example — the task of checking whether a
network update (or change) can affect the validity of one or
more constraints — to illustrate relative-complete verifica-
tion, because (1) it is a pressing problem as networks (e.g.,
global-scale private WANs [55, 59]) undergoing frequent
and increasingly complicated updates have to continually
maintain network-wide constraint, and (2) it allows us to
(conveniently) vary the levels of information available to the
verifier. In the rest of this section, we incrementally develop
two verifiers (verification tests) that assure a constraint con-
tinues to hold after a network update, using increasingly
more (available) information: (i) the least information is the
constraint (definition) alone; and (ii) a more powerful test is
possible when both the constraint and the update are known.
We first describe our driving example inspired by [49],

the problem of managing an enterprise network by multiple

Fauré: A Partial Approach to Network Analysis HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

teams in which the constraints are network policies main-
tained by individual teams or a network-wide invariant, the
update is a configuration change, and the test is performed
by a (dedicated) separate team. Specifically, the enterprise
network connects two frontend subnets and two backend
servers, the two subnets are for market management (de-
noted by Mkt) and research & development (R&D), and the
two backend servers are the critical accounting server (CS)
and the general purpose server (GS). The network is man-
aged by two teams, a security team that maintains firewall
configuration and a second team responsible for traffic engi-
neering (TE) that configures the load balancers. The target
constraints (T1, T2) we want to verify after a network up-
date are: T1 requires Mkt traffic to the critical server CS to go
through a firewall; T2 requires R&D traffic to all servers to
pass through a load balancer.

We can model this network by three c-tables (Net = {R, Lb,
Fw}): R(subnet, server, port) keeps reachability information
about traffic (on specific ports) allowed from the subnets
to the servers; Lb(subnet, server) (resp.,Fw(subnet, server))
indicates a load balancer (resp., firewall) is deployed be-
tween the subnet and server. The c-domain for the attributes
subnet, server, port are {Mkt., R&D, x̄}, {CS, GS, ȳ} and {80,
344, 7000, p̄}, respectively (x̄, ȳ and p̄ are c-variables). Over
these tables, we can formulate the constraints T1, T2 as fauré-
log programs (rules q9, q10) in Listing 3. The general idea
is that a (network) constraint can be viewed as a fauré-log
query whose result is a 0-ary predicate panic. If the query
evaluates to ∅, then the constraint holds. Otherwise, the
query will produce {panic} signaling constraint violation.
Category (i) test: using only network constraints

Category (i) test considers the least information when we
are allowed to look only at the constraints themselves. Our
only opportunity to use available information is through sub-
sumption of one constraint by one or more other constraints
(that are known to hold).

Suppose we know that the TE and security teams each
maintain some policies (denoted by constraint Clb and Cs,
respectively): Clb requires the TE team to load balance traffic
to the critical server — only frontend subnets can send pack-
ets to the critical CS, and the packets must use port 7000 and
pass through a load balancer; Cs requires the security team to
control packets to all the servers — the packets must use one
of the three ports 80, 334 and 7000, and must pass through a
firewall. Similar to the encoding of T1, T2, we can formulate
Clb, Cs as panic queries shown in Listing 3. For example, the
Clb query derives panic from the three possible violations
(rules q13-q15). If Clb, Cs are known to hold after the update,
to prove that T1, T2 will also hold, we only need to show that
{Clb, Cs} subsume T1, T2. Here, {Clb, Cs} does subsume T1 be-
cause the corresponding rule q9 is really just a special case

of q17, i.e.q9 ⊆ q17, the violation of T1 implies the violation
of Cs (q17).
But how do we automate constraint subsumption? Now

that constraints are 0-ary query programs, constraint sub-
sumption becomes a special case of program containment [2,
25]. Program containment on pure datalog is known to be
NP-complete. While the exponential complexity of contain-
ment checking [2, 3, 24, 25] may not block practical use since
the constraint programs are usually short, fauré-log allows
us to side step the containment analysis entirely. The idea
is a novel reduction of program containment in datalog to
query evaluation in fauré-log.

1 q9: panic :- R(Mkt,CS,p̄), ¬Fw(Mkt,CS) % T1
2 q10: panic :- R(R&D,ȳ,7000), ¬Lb(R&D,ȳ) % T2
3 /* Clb(q13-q15) enumerates 3 TE violations */
4 q11: panic :- Vt(x,y,p)
5 q13: Vt(x̄,CS,p̄) :- R(x̄,CS,p̄), x̄ ,Mkt, x̄ ,R&D
6 q14: Vt(x̄,CS,p̄) :- R(x̄,CS,p̄), ¬Lb(x̄,CS)
7 q15: Vt(x̄,CS,p̄) :- R(x̄,CS,p̄), p̄ ,7000
8 /* Cs(q17-q18) enumerates 2 security violations */
9 q16: panic :- Vs(x,y,p)
10 q17: Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),¬Fw(x̄,ȳ)
11 q18: Vs(x̄,ȳ,p̄) :- R(x̄,ȳ,p̄),p̄ , 80,p̄ ,344,p̄ ,7000

Listing 3: Constraints as 0-ary fauré-log query

We outline the reduction by continuing with our run-
ning example: Suppose q9 produces panic, then we must
have R(Mkt, CS, p̄) and Fw(x̄, ȳ)[x̄ = Mkt ∧ ȳ = CS] in the network
state. Evaluating q17 on such instance (q17 (Net) as defined in
§ 3) will produce panic. Such evaluation is always possible in
fauré-log because we can rewrite a constraint rule into a form
whose body tuples (like q9) contain only c-variables or con-
stants (p̄ and CS in q9) but not variables (e.g.,x). We only need
to substitute the variables with c-variables augmented with
proper conditions. After such rewrite that removes variables,
a variable-free fauré-log query P contains another query Q,
if evaluating P on the database obtained from the body of Q
produces panic.
Category (ii) test: using both constraints and updates
The containment based category (i) test is only relative-

complete, it may reach an inconclusive answer, but more
information will enable a more thorough analysis. For ex-
ample, {Clb, Cs} does not subsume T2, thus category (i) test
will return “unknown” on T2. But if we are allowed to use
also the update information, we will be able to perform a
test that completes verification for T2.

To see how this is possible, consider verifying constraint C
under an update U, we can incorporate U into C by rewriting
it into a new constraint C′: C′ holds before the update U if
and only if C holds after the update. That is, we can verify
C after U by checking C′ that reflects U. Continuing with T2
and Listing 3, suppose we also know that the update (of the

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Fangping Lan, Bin Gui and Anduo Wang

TE team) was to remove load balancing between Mkt and
CS, and add load balancing for R&D and GS. To incorporate
this update into T2, we construct a new T′2 by following the
rewrite in [37]:

1 /* add (R&D,GS) to the load balancer */
2 q19: Lb(R&D,GS).
3 q20: Lb1(x̄,ȳ) :- Lb(x̄,ȳ)
4 /* delete (Mkt,CS) from the load balancer */
5 q21: Lb2(x̄,ȳ) :- Lb1(x̄,ȳ)[x̄ ,Mkt]
6 q22: Lb2(x̄,ȳ) :- Lb1(x̄,ȳ)[ȳ ,CS]
7 /* panic after updating load balancer(Lb2) */
8 q24: panic :- R(R&D,ȳ,7000), ¬ Lb2(R&D,ȳ)

Listing 4: Rewriting constraints to reflect update

where rules q19 − q20 (resp. q21 − q22) add (resp. delete) the
new (old) tuple to (from) the old Lb configuration. The new
relation Lb2 that reflects the update then substitutes Lb in
T2 (q10) and creates the new constraint T′2 (q24). To ensure
T2 continues to hold, we only need to check T′2 ⊆ {Clb, Cs}.
It turns out that this can be verified by the fauré-log query
evaluation method as in category (i) test.

6 PRELIMINARY RESULTS
Practical implementation.We implement fauré-log in the
PostgreSQL database [47]. This is especially important as it
allows us to leverage existing database structure (e.g., index-
ing) to accelerate fauré-log evaluation. Ourmain contribution
is to support c-tables by rewriting SQL’s default valuation in
three steps: (1) generate the data part of a c-table (key terms
reserved for c-variables) in pure SQL; (2) add proper condi-
tions (including fauré-log pattern matching) by a sequence
of SQL UPDATE; and (3) invoke Z3 [14] to remove tuples with
contradictory conditions. Note that while Postgres supports
native recursion, recursive fauré-log is implemented by strat-
ification [2, 25] to correctly process the conditions.
Preliminary evaluation. We evaluate the running time of
fauré-log queries in listing 2 on realistic forwarding config-
uration inferred from BGP RIB (route-views2.oregon-ix.net
on 2021-06-10). We choose listing 2 because it covers repre-
sentative features of fauré-log such as recursive and nested
query. For a given set of prefixes, we generate for each pre-
fix the forwarding entries as follows: randomly select 5 AS
paths where one of them is used as a primary link while the
rest serve as the backups; set the preference of the backup
links (in a random order) so that a backup will be used only
when the primary and all the backups with higher prefer-
ences have failed. We then perform all pair-wise reachability
analysis (result in R) by q4, q5, as well as reachability under
three failure patterns (q6 − q8). All experiments are run on a
64-bit laptop with 1.4 GHz CPU and 8 GB memory. Table 4
summarizes the results: on four inputs (# of prefixes from
1000 to 922067), for each analysis except the recursion q4 − q5

that compute all pair-wise reachability, we show the SQL
and Z3 completion time (averaged over 10 runs) separately.
The number of tuples generated indicating the size of the
analysis is also illustrated. Overall, the SQL running time is
encouraging, even on 922067 prefixes (all the prefixes in the
RIB file), all pair-wise analysis through recursion complete
in < 70 minutes.

q4 − q5 q6 q7 q8
#prefix sql sql Z3 #tuples sql Z3 #tuples sql Z3 #tuples
1000 0.625 0.85 796.35 42425 0.08 0.27s 16 0.15 12.64 828
10000 5.75 8.96 - 418224 0.27 3.41 194 1.8 137.05 8706
100000 54.85 113.48 - 4435862 1.66 25.22 1387 34.67 1941.04 86360
922067 816.4 4169.02 - 46503247 11.1 288.17 16490 267.05 - 858180

Table 4: Running time (seconds) of reachability analysis on
four rib inputs: ‘-’ means over 2 hours.

7 RELATEDWORK
Network datalog. Datalog-like language was first intro-
duced in declarative networking [10, 11, 38–41, 43], and later
used for network management [8, 13, 27, 35, 36] and verifi-
cation [18, 42, 60]. To our best knowledge, fauré-log is the
first to support incomplete information (i.e. c-tables).
Partial representation. Prior work often uses specialized
data structure [20] tailored to specific verification task [6] or
network topology [46] to locate a (drastically smaller) subset
of the network state that is relevant. In contrast, the c-tables
at the heart of fauré can be accessed and transformed by
arbitrary fauré-log queries.
Incremental computation. Notable examples include Jin-
jing [55] that exploits practical heuristics, and INCV [60]
that leverages generic engine (e.g., differential datalog), both
have the entire network state incrementally maintained. In
contrast, fauré’s relative-complete verifiers use constraint
subsumption, a reasoning process that entirely eliminates
the need to access network state.

8 CONCLUSION
This paper argues for a partial approach to network analysis
when our knowledge of the network is uncertain or un-
available, a significant departure from the de-facto complete
scheme. Central to partial analysis is the notion of loss-less
modeling that accurately models network uncertainty, and
relative-complete verification that reaches an inconclusive
result only when more information is absolutely needed. As
a realization of this vision, we present fauré, a preliminary
design in which, a datalog extension called fauré-log is de-
veloped to access and manipulate partial network states, and
various static analysis is combined with fauré-log evaluation
to reason about incomplete network information. Practical
implementation of fauré and encouraging evaluation are also
presented.
Acknowledgments.We thank theHotNets reviewerswhose
feedback helped improve this paper. This work was sup-
ported by National Science Foundation Award CNS-1909450.

Fauré: A Partial Approach to Network Analysis HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya

Akella. 2020. Tiramisu: Fast Multilayer Network Verification. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 201–219. https:
//www.usenix.org/conference/nsdi20/presentation/abhashkumar

[2] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Founda-
tions of Databases: The Logical Level (1st ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[3] Serge Abiteboul, Paris Kanellakis, and Gosta Grahne. 1987. On the
Representation and Querying of Sets of Possible Worlds. In Proceedings
of the 1987 ACM SIGMOD International Conference on Management of
Data (SIGMOD âĂŹ87). Association for Computing Machinery, New
York, NY, USA, 34âĂŞ48. https://doi.org/10.1145/38713.38724

[4] Hari Balakrishnan, Sujata Banerjee, Israel Cidon, David Culler, Debo-
rah Estrin, Ethan Katz-Bassett, Arvind Krishnamurthy, Murphy Mc-
Cauley, Nick McKeown, Aurojit Panda, Sylvia Ratnasamy, Jennifer
Rexford, Michael Schapira, Scott Shenker, Ion Stoica, David Tennen-
house, Amin Vahdat, and Ellen Zegura. 2021. Revitalizing the Public
Internet by Making It Extensible. SIGCOMM Comput. Commun. Rev.
51, 2 (May 2021), 18âĂŞ24. https://doi.org/10.1145/3464994.3464998

[5] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce Shep-
herd, and Gordon Wilfong. 2002. Route oscillations in I-BGP with
route reflection. In Proceedings of the 2002 conference on Applica-
tions, technologies, architectures, and protocols for computer communi-
cations (SIGCOMM ’02). ACM, New York, NY, USA, 235–247. https:
//doi.org/10.1145/633025.633048

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018.
Control Plane Compression. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’18).
Association for ComputingMachinery, New York, NY, USA, 476âĂŞ489.
https://doi.org/10.1145/3230543.3230583

[7] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. 2011.
Answer Set Programming at a Glance. Commun. ACM 54, 12 (Dec.
2011), 92âĂŞ103. https://doi.org/10.1145/2043174.2043195

[8] Martin Casado, Nate Foster, and Arjun Guha. 2014. Abstractions for
Software-defined Networks. Commun. ACM 57, 10 (Sept. 2014), 86–95.
https://doi.org/10.1145/2661061.2661063

[9] S. Ceri, G. Gottlob, and L. Tanca. 1989. What you always wanted to
know about Datalog (and never dared to ask). IEEE Transactions on
Knowledge and Data Engineering 1, 1 (1989), 146–166. https://doi.org/
10.1109/69.43410

[10] Xu Chen, Z. Morley Mao, and Jacobus van der Merwe. 2007. To-
wards Automated Network Management: Network Operations Using
Dynamic Views. In Proceedings of the 2007 SIGCOMM Workshop on
Internet Network Management (INM ’07). ACM, New York, NY, USA,
242–247. https://doi.org/10.1145/1321753.1321757

[11] Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Sean Rhea, and
Timothy Roscoe. 2005. Finally, a use for componentized transport
protocols. In In HotNets IV.

[12] Kevin Dackow, Andrew Wagner, Tim Nelson, Shriram Krishnamurthi,
and Theophilus A. Benson. 2020. Solver-Aided Multi-Party Config-
uration. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets ’20). Association for Computing Machinery, New
York, NY, USA, 103âĂŞ109. https://doi.org/10.1145/3422604.3425944

[13] Bruce Davie, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado,
Natasha Gude, Amar Padmanabhan, Tim Petty, Kenneth Duda, and
Anupam Chanda. 2017. A Database Approach to SDN Control Plane
Design. SIGCOMM Comput. Commun. Rev. 47, 1 (Jan. 2017), 15–26.
https://doi.org/10.1145/3041027.3041030

[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Hei-
delberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.1792766

[15] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Mill-
stein, Vyas Sekar, and George Varghese. 2016. Efficient Network Reach-
ability Analysis Using a Succinct Control Plane Representation. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 217–232. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/fayaz

[16] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. 2007. Implica-
tions of Autonomy for the Expressiveness of Policy Routing. IEEE/ACM
Trans. Netw. 15, 6 (Dec. 2007), 1266–1279. https://doi.org/10.1109/
TNET.2007.896531

[17] Nick Feamster and Jennifer Rexford. 2007. Network-Wide Prediction
of BGP Routes. IEEE/ACM Trans. Netw. 15, 2 (April 2007), 253âĂŞ266.
https://doi.org/10.1109/TNET.2007.892876

[18] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’15). USENIX Association, USA, 469âĂŞ483.

[19] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’15). USENIX Association, USA, 469âĂŞ483.

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. 2016. Fast Control Plane Analysis Using an Abstract
Representation. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). Association for Computing Machinery, New York, NY,
USA, 300âĂŞ313. https://doi.org/10.1145/2934872.2934876

[21] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. 2002.
The Stable Paths Problem and Interdomain Routing. IEEE Trans. on
Networking 10 (2002), 232–243.

[22] Timothy G. Griffin and Gordon Wilfong. 1999. An Analysis of BGP
Convergence Properties. In SIGCOMM.

[23] T. G. Griffin and G. Wilfong. 2000. A Safe Path Vector Protocol. In
INFOCOM.

[24] Ashish Gupta, Yehoshua Sagiv, Jeffrey D. Ullman, and Jennifer Widom.
1994. Constraint Checking with Partial Information. In Proceedings of
the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS ’94). Association for Computing Machinery,
New York, NY, USA, 45âĂŞ55. https://doi.org/10.1145/182591.182597

[25] Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua Sagiv, and Oded
Shmueli. 2001. Static Analysis in Datalog Extensions. J. ACM 48, 5
(Sept. 2001), 971âĂŞ1012. https://doi.org/10.1145/502102.502104

[26] Yotam Harchol, Dirk Bergemann, Nick Feamster, Eric Friedman,
Arvind Krishnamurthy, Aurojit Panda, Sylvia Ratnasamy, Michael
Schapira, and Scott Shenker. 2020. A Public Option for the Core. In
Proceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM ’20). As-
sociation for Computing Machinery, New York, NY, USA, 377âĂŞ389.
https://doi.org/10.1145/3387514.3405875

[27] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C. Mitchell,
and Scott Shenker. 2009. FML: Practical Declarative Network Man-
agement. In Proceedings of the 1st ACM Workshop on Research on En-
terprise Networking (WREN ’09). ACM, New York, NY, USA, 1–10.
https://doi.org/10.1145/1592681.1592683

https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.1145/38713.38724
https://doi.org/10.1145/3464994.3464998
https://doi.org/10.1145/633025.633048
https://doi.org/10.1145/633025.633048
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2661061.2661063
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/1321753.1321757
https://doi.org/10.1145/3422604.3425944
https://doi.org/10.1145/3041027.3041030
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://doi.org/10.1109/TNET.2007.896531
https://doi.org/10.1109/TNET.2007.896531
https://doi.org/10.1109/TNET.2007.892876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/182591.182597
https://doi.org/10.1145/502102.502104
https://doi.org/10.1145/3387514.3405875
https://doi.org/10.1145/1592681.1592683

HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom Fangping Lan, Bin Gui and Anduo Wang

[28] Geoff Huston. [n. d.]. The Death of Transit and Beyond. https://labs.
apnic.net/presentations/store/2017-02-28-death-of-transit.pdf. ([n.
d.]).

[29] Tomasz Imieliński and Witold Lipski. 1984. Incomplete Information
in Relational Databases. J. ACM 31, 4 (Sept. 1984), 761âĂŞ791. https:
//doi.org/10.1145/1634.1886

[30] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal,
Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster, Andrew
Helwer, Mark Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Anirud-
dha Parkhi, Hanukumar Pinnamraju, Adrian Power, Neha Milind Raje,
and Parag Sharma. 2019. Validating Datacenters at Scale. In Pro-
ceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, 200âĂŞ213. https://doi.org/10.1145/3341302.3342094

[31] Juniper networks, Fast Reroute Overview. (14-Sep-18).
[n. d.]. https://www.juniper.net/documentation/en_US/
junos-space-apps/connectivity-services-director4.1/topics/concept/
fast-reroute-understanding.html. ([n. d.]).

[32] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. 2013. Real Time Network Policy
Checking Using Header Space Analysis. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation
(nsdi’13). USENIX Association, USA, 99âĂŞ112.

[33] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header space analysis: static checking for networks. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA.

[34] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2012. VeriFlow: Verifying Network-Wide Invariants in Real
Time. In Proceedings of the First Workshop on Hot Topics in Software
Defined Networks (HotSDN ’12). Association for Computing Machin-
ery, New York, NY, USA, 49âĂŞ54. https://doi.org/10.1145/2342441.
2342452

[35] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude,
Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-
Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan,
Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan
Wendlandt, Alexander Yip, and Ronghua Zhang. 2014. Network Vir-
tualization in Multi-tenant Datacenters. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementa-
tion (NSDI’14). USENIX Association, Berkeley, CA, USA, 203–216.
http://dl.acm.org/citation.cfm?id=2616448.2616468

[36] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. 2010. Onix: a distributed control
platform for large-scale production networks. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation
(OSDI’10).

[37] Alon Y. Levy and Yehoshua Sagiv. 1993. Queries Independent of Up-
dates. In Proceedings of the 19th International Conference on Very Large
Data Bases (VLDB ’93). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 171–181. http://dl.acm.org/citation.cfm?id=645919.
672674

[38] Changbin Liu, Boon Thau Loo, and Yun Mao. 2011. Declarative Auto-
mated Cloud Resource Orchestration. In Proceedings of the 2Nd ACM
Symposium on Cloud Computing (SOCC ’11). ACM, New York, NY, USA,
Article 26, 8 pages. https://doi.org/10.1145/2038916.2038942

[39] Changbin Liu, Lu Ren, Boon Thau Loo, Yun Mao, and Prithwish Basu.
2012. Cologne: A Declarative Distributed Constraint Optimization
Platform. Proc. VLDB Endow. 5, 8 (April 2012), 752–763. https://doi.
org/10.14778/2212351.2212357

[40] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timo-
thy Roscoe, and Ion Stoica. 2006. Declarative Networking: Language,
Execution and Optimization. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’06). ACM,
New York, NY, USA, 97–108. https://doi.org/10.1145/1142473.1142485

[41] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakr-
ishnan. 2005. Declarative Routing: Extensible Routing with Declarative
Queries (SIGCOMM ’05). ACM, 12. https://doi.org/10.1145/1080091.
1080126

[42] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayara-
man, and George Varghese. 2015. Checking Beliefs in Dynamic Net-
works. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). USENIX Association, Oakland, CA, 499–
512. https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/lopes

[43] Yun Mao, Boon Thau Loo, Zachary Ives, and Jonathan M. Smith.
2008. MOSAIC: Unified Declarative Platform for Dynamic Over-
lay Composition. In Proceedings of the 2008 ACM CoNEXT Confer-
ence (CoNEXT ’08). ACM, New York, NY, USA, Article 5, 12 pages.
https://doi.org/10.1145/1544012.1544017

[44] James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan,
and Scott Shenker. 2019. Enabling a Permanent Revolution in Internet
Architecture. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM âĂŹ19). Association for Computing Ma-
chinery, New York, NY, USA, 1âĂŞ14. https://doi.org/10.1145/3341302.
3342075

[45] D.McPherson, V. Gill, D.Walton, and A. Retana. RFC 3345, 2002. Border
Gateway Protocol (BGP) Persistent Route Oscillation Condition. (RFC
3345, 2002).

[46] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Ry-
balchenko, and George Varghese. 2016. Scaling Network Verification
Using Symmetry and Surgery. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). Association for Computing Machinery, New York, NY, USA,
69âĂŞ83. https://doi.org/10.1145/2837614.2837657

[47] PostgreSQL: The World’s Most Advanced Open Source Relational
Database. [n. d.]. https://www.postgresql.org/. ([n. d.]).

[48] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten God-
frey, and Matthew Caesar. 2020. Plankton: Scalable network config-
uration verification through model checking. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20).
USENIX Association, Santa Clara, CA, 953–967. https://www.usenix.
org/conference/nsdi20/presentation/prabhu

[49] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma,
and Ying Zhang. [n. d.]. PGA: Using Graphs to Express and Automati-
cally Reconcile Network Policies. In SIGCOMM ’15.

[50] B. Quoitin and S. Uhlig. 2005. Modeling the routing of an autonomous
system with C-BGP. IEEE Network 19, 6 (2005), 12–19. https://doi.org/
10.1109/MNET.2005.1541716

[51] Removed for anonymous submission. [n. d.]. ([n. d.]).
[52] Raja R. Sambasivan, David Tran-Lam, Aditya Akella, and Peter

Steenkiste. 2015. Bootstrapping Evolvability for Inter-Domain Rout-
ing. In Proceedings of the 14th ACM Workshop on Hot Topics in Net-
works (HotNets-XIV). ACM, New York, NY, USA, Article 12, 7 pages.
https://doi.org/10.1145/2834050.2834101

[53] Raja R. Sambasivan, David Tran-Lam, Aditya Akella, and Peter
Steenkiste. 2017. Bootstrapping Evolvability for Inter-domain Rout-
ing with D-BGP (SIGCOMM ’17). ACM, New York, NY, USA, 14.
https://doi.org/10.1145/3098822.3098857

https://labs.apnic.net/presentations/store/2017-02-28-death-of-transit.pdf
https://labs.apnic.net/presentations/store/2017-02-28-death-of-transit.pdf
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/3341302.3342094
https://www.juniper.net/documentation/en_US/junos-space-apps/connectivity-services-director4.1/topics/concept/fast-reroute-understanding.html
https://www.juniper.net/documentation/en_US/junos-space-apps/connectivity-services-director4.1/topics/concept/fast-reroute-understanding.html
https://www.juniper.net/documentation/en_US/junos-space-apps/connectivity-services-director4.1/topics/concept/fast-reroute-understanding.html
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
http://dl.acm.org/citation.cfm?id=2616448.2616468
http://dl.acm.org/citation.cfm?id=645919.672674
http://dl.acm.org/citation.cfm?id=645919.672674
https://doi.org/10.1145/2038916.2038942
https://doi.org/10.14778/2212351.2212357
https://doi.org/10.14778/2212351.2212357
https://doi.org/10.1145/1142473.1142485
https://doi.org/10.1145/1080091.1080126
https://doi.org/10.1145/1080091.1080126
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://doi.org/10.1145/1544012.1544017
https://doi.org/10.1145/3341302.3342075
https://doi.org/10.1145/3341302.3342075
https://doi.org/10.1145/2837614.2837657
https://www.postgresql.org/
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://www.usenix.org/conference/nsdi20/presentation/prabhu
https://doi.org/10.1109/MNET.2005.1541716
https://doi.org/10.1109/MNET.2005.1541716
https://doi.org/10.1145/2834050.2834101
https://doi.org/10.1145/3098822.3098857

Fauré: A Partial Approach to Network Analysis HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

[54] Renata Teixeira and Jennifer Rexford. 2004. A Measurement Frame-
work for Pin-Pointing Routing Changes. In Proceedings of the ACM
SIGCOMM Workshop on Network Troubleshooting: Research, Theory
and Operations Practice Meet Malfunctioning Reality (NetT ’04). Asso-
ciation for Computing Machinery, New York, NY, USA, 313âĂŞ318.
https://doi.org/10.1145/1016687.1016704

[55] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, Da Yu, Chen Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely
and Automatically Updating In-Network ACL Configurations with
Intent Language. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM ’19). Association for Computing
Machinery, New York, NY, USA, 214âĂŞ226. https://doi.org/10.1145/
3341302.3342088

[56] Ron van der Meyden. 1998. Logical Approaches to Incomplete Infor-
mation: A Survey. In Logics for Databases and Information Systems (the
book grow out of the Dagstuhl Seminar 9529: Role of Logics in Informa-
tion Systems, 1995), Jan Chomicki and Gunter Saake (Eds.). Kluwer,
307–356.

[57] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. 2000. Per-
sistent route oscillations in inter-domain routing. Computer Networks
32, 1 (2000), 1 – 16. https://doi.org/10.1016/S1389-1286(99)00108-5

[58] G.G. Xie, Jibin Zhan, D.A. Maltz, Hui Zhang, A. Greenberg, G. Hjalm-
tysson, and J. Rexford. 2005. On static reachability analysis of IP
networks. In Proceedings IEEE 24th Annual Joint Conference of the
IEEE Computer and Communications Societies., Vol. 3. 2170–2183 vol. 3.
https://doi.org/10.1109/INFCOM.2005.1498492

[59] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan
Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin,
Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang
Wang, and Rodrigo Fonseca. 2020. Accuracy, Scalability, Coverage:
A Practical Configuration Verifier on a Global WAN. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM ’20). Association
for Computing Machinery, New York, NY, USA, 599âĂŞ614. https:
//doi.org/10.1145/3387514.3406217

[60] Peng Zhang, Yuhao Huang, Aaron Gember-Jacobson, Wenbo Shi, Xu
Liu, Hongkun Yang, and Zhiqiang Zuo. 2020. Incremental Network
Configuration Verification. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks (HotNets ’20). Association for Computing
Machinery, New York, NY, USA, 81âĂŞ87. https://doi.org/10.1145/
3422604.3425936

[61] Peng Zhang, Xu Liu, Hongkun Yang, Ning Kang, Zhengchang Gu, and
Hao Li. 2020. APKeep: Realtime Verification for Real Networks. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 241–255. https:
//www.usenix.org/conference/nsdi20/presentation/zhang-peng

https://doi.org/10.1145/1016687.1016704
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1016/S1389-1286(99)00108-5
https://doi.org/10.1109/INFCOM.2005.1498492
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3422604.3425936
https://doi.org/10.1145/3422604.3425936
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng

	Abstract
	1 Introduction
	2 Fauré Overview
	3 From datalog to Fauré-log
	4 Loss-less Modeling
	5 Relative-Complete Verification
	6 Preliminary Results
	7 Related Work
	8 Conclusion
	References

