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Abstract. Internet routing is the process of selecting paths across the Internet
to connect the communicating hosts, it is unique in that path selection is jointly
determined by a network of independently operated networks, known as domains
or Autonomous Systems (ASes), that interconnect to form the Internet. In fact,
the present routing infrastructure takes such an extreme position that it favors lo-
cal autonomy — an AS can use arbitrary path preference to override the default
shortest path policy, at the expense of potential global oscillation — a collection
of AS preferences (policies) can fail to converge on a stable path, a path that is
also the most preferred possible for every AS along the path. In this paper, we ex-
amine the route oscillation problem with non-monotonic reasoning. We observe
that, in the absence of any AS specific policies, Internet routing degenerates into
the monotonic computation of shortest path — a preferred (shorter) (super)path
always extends another preferred (sub)path; But fully autonomous AS policies
are non-monotonic — a path favored by one AS can be an extension of a less
preferred path of a neighbor, to which an “upgrade” to a better path can cause
this AS to downgrade to a less preferred path previously discarded. Based on this
insight, we present an Answer Set Programming (ASP) formulation that allows
for automatic oscillation detection. Our evaluation using the clingo ASP solver is
promising: on realistic Internet topology and representative policies, clingo can
detect anomalies within 35 seconds.

1 Introduction

The Internet is at once the world-wide information infrastructure that has revolution-
ized the computers and communications like nothing before. Behind its tremendous
success as a means for information dissemination and a medium for collaboration and
interaction between geographically distributed computers, is one common service — to
provide end to end data paths that connect the communicating hosts. To select the much
needed communication paths, the Internet relies on a process called routing.

Routing on the global Internet is unique in that, the Internet is a network of inde-
pendently operated networks — known as domains or Autonomous Systems (ASes) that
are driven by their own economic concerns. This makes routing a process jointly deter-
mined by all the ASes along the path. In particular, border gateway protocol (BGP) [9]
is currently the only interdomain (i.e. across ASes) routing protocol that stitches to-
gether the Internet, it allows the ASes to set arbitrary path preference — local policies
— to override the path decision based on shortest path metric — by default, without
any AS-specific policies, BGP behaves like the distributed execution of the Dijkstra
algorithm on a (AS-level) graph and always selects the path with fewest AS hops.



This extreme position taken by BGP — favoring local autonomy, allowing an AS
to influence path selection based solely on its own concerns without any global coor-
dination — has an important consequence. The BGP protocol suffers a global anomaly
called route oscillation [7]: BGP system is not guaranteed to converge on a unique best
path. There exists some AS policies when the BGP system is unable to agree upon a
global policy-compliant path, and keeps oscillating between several sub-optimal ones.
Much efforts in the networking community [5, 4, 6] have been on using abstract com-
binatorial models and derived structures — e.g., state transition machines, circular de-
pendency graphs — to understand and detect such routing oscillation.

In this position paper, instead of relying on specialized combinatorial structures or
expert-guided reasoning, we use non-monotonic reasoning as a means to understand,
explain, and automatically detect policies that can lead to routing oscillation.

We observe that, in the absence of any AS policies, Internet routing degenerates into
the monotonic computation of shortest path: For a particular destination, any shortest
path to that destination, denoted by P,, selected by AS x, must also extend another
shortest path that has been selected by some neighbor AS y that is one hop closer to
the destination. This has been captured by the Bellman-Ford equation that lies at the
heart of the Dijkstra algorithm — P, = sp,{x added toP, }, where sp is the aggregate
function that returns the shortest path!.

The Bellman-Ford equation implies that, path improvement to x’s neighbor — y
selects a better (thus shorter) path P,; — can only benefit x, resulting in a P, no worse
than before. Since the set of available paths are finite, all ASes will eventually converge
on the path that is also their best possible choice. But independently set AS policies
make path selection non-monotonic: The local policy of AS x may prefer a path (P, )
that extends a path (P,) disliked by a neighbor y. As y learns and gets promoted to a
better path — moving away from the less preferred P,, it also unfortunately makes the
much liked P, unavailable at x, causing x to downgrade to a less preferred path.

Based on this observation, we developed a systematic encoding of policy configura-
tions in Answer Set Programming (ASP) [2, 3] that allows for automated analysis. Our
main result is that, the ASP solution to our policy formulation coincides with the paths
selected by the policy-based routing system, thus providing a means to detect oscilla-
tion: The policies are guaranteed to converge on a single best path if the ASP solver
gives a unique solution; The policies can lead to oscillation in some circumstances but
converge in other cases if the ASP solver finds multiple solutions; The policies will
result in permanent oscillation in any circumstances if the ASP solver cannot find any
solution.

We also evaluated our ASP formulation using the clingo [1] solver, showing promis-
ing result: on realistic Internet topology with up to 10k nodes and 51k edges, clingo can
correctly recognize routing oscillation problems for several representative policy con-
figurations within 35 seconds; Our encoding also scales gracefully, the clingo searching
time increases linearly with respect to the topology size (in terms of number of nodes
under the same edge density).

! The original Bellman-Ford equation addresses computation of the cost of the shortest path. We
presented a modified version for the shortest path — a list of nodes that constitute the path.



2 Internet Routing and Non-monotonic Reasoning

In this section, we provide the necessary background on BGP and a detailed analysis of
route oscillation with non-monotonic reasoning. We begin with a brief review of BGP
using an abstract model called the stable path problem (SPP) formalism. SPP offers a
simple semantics for AS policies while abstracting away all nonessential details, such
as implementation specifics of BGP.
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Fig. 1: (left) Example: the SPP model for AS policies. (right) Policy-based route selection.

An instance of SPP, S = (G, P, R), as shown in Figure 1 (left), is an AS graph
G — 0 is the pre-fixed destination of interests, together with the permitted paths P at
each AS, and the path ranking (preference) functions R — a vertical list next to each
AS, with the highest ranked path at the top going down to the lowest ranked path at the
bottom. In Figure 1 (left), each AS prefers the counter-clockwise path of length 2 over
all other paths to 0. For example, AS1 prefers the longer path 120 over its direct path
10.
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only selects one single best path, the announcement of a new (better) path implicitly
retracts the previously exposed (older) path.

This path selection process was originally designed for using within an AS under
one single administrative domain that often employs a single (global) ranking function
— e.g., shortest path policy that always favors fewer hops. The global ranking ensures
that all nodes will converge onto a stable path, a path that is not only globally optimal
but also coincides with every node’s local best.



But fully autonomous policies of BGP can lead to non-monotonic behavior. By fully
autonomous we mean an AS is free to prefer a path that extends a path disliked by a
neighbor. The ASes do not need to take a consistent view of the paths based on some
universally agreed criteria. For example, in Figure 1 (left), 210 is the most preferred
path by AS2, but it extends the less preferred 10 from As1. Note how this policy config-
uration diverges from the Bellman-Ford equation discussed in § 1. Such “disagreeing”
policies lead to route oscillation shown in Figure 2: Suppose the current best path se-
lected by AS1 and As2 are 10 and 210, respectively. When AS1 learns a new path 30
from AS3, it will elevate 130 to be its best path and expose it to AS2, which also implic-
itly withdraws 10, resulting in the retraction of AS2’s top choice 210. Now, AS2 needs
to downgrade to the less preferred 10. In fact, all three ASes will keep exchanging
route announcements and exhibit similar oscillation: their choices of best path bounce
back and forth as the subpaths they depends on are announced and withdrawn by the
corresponding neighbors.

3 An ASP Formulation for Automatic Oscillation Detection

An advantage of our non-monotonic reasoning approach is that it lends itself to an
ASP formulation [2, 3] that, readily recognizable by modern ASP solvers, allows for
automatic analysis.

First, we present a straightforward ASP encoding of the AS policies defined in § 2,
thanks to ASP’s native support for negation and constraints. Our formulation involves
two predicates r and b: r (p) states that the path p is permitted at some AS, b (p) says
that p is selected as the best path, and p is a tuple that contains the list of nodes along
the path. To fully specify the policy-based route selection of an AS, we only need to
describe how to generate the permitted and selected paths r, b.

A permitted path is either a direct path to the destination AS or an extension to
paths received from a neighbor, which must also be that neighbor’s current best path.
Take As2 in Figure 1 (left) as an example, it can generate two permitted candidates, one
direct path from itself to 0, and an indirect one extending the best path of As1.

% direct path as known fact (s)

r((z,0)).

% an indirect path generated by route announcements from a
neighbor

r((2,1,0)) := b((1,0)).

The best paths are determined by the path ranking function, the encoding of which is
also straightforward. For every p; in a list of paths p; - - - , p,, ranked from the most pre-
ferred to the least preferred, we only need a rule of the form b (pi) :- r(pi), not
r(pl-1), ..., not r(pl), meaning that, p; can be promoted to be the best path
only if it is available, while none of the more preferred paths are presented. Continuing
with As2, its ranking function is captured by the rules as follows.

% ranking function of the permitted paths at AS2
b((2,0)) := r((2,0)), not r((2,1,0)).
b((2,1,0)) := r((2,1,0)).




Finally, we need to ensure that only one best path is selected. To achieve this, we
only need to make sure that, for any p; from a list of permitted paths pi,--- , p,, the
presence of p; will prevent the derivation of p;, j # . In other words, for any p;, p; (i #
J), it follows that b(p;) and b(p;) cannot be simultaneously true. For the two paths —
210,20 — permitted at AS2, we have:

o

% only one permitted path can be selected as the best path
= b((2,1,0)), b((2,0)).

The strength of this formulation is that, for a set of AS policies, the solution to this
ASP encoding coincides with all the stable best paths that can be selected by the BGP
system. For example, running the ASP program for Figure 1 yields no solution. More
importantly, this correspondence gives a method for detecting BGP oscillation, stated
as follows:

Let L denote an ASP program that encodes a set of AS policies as described in
this section, we can use the solution(s) to L to detect route oscillation as follows: (1)
0 solution implies permanent oscillation since the policies fail to give any stable path
selection; (2) 1 solution indicates convergence since the policies will select a unique
set of best paths under all circumstances — any ordering of route announcement ex-
changes; (3) multiple solutions mean possible oscillation: depending on the ordering
of route announcement exchange, the policies can converge onto different set of best
paths, but it is also possible that the BGP system may oscillate on other circumstances.

4 Preliminary evaluation

In this section, we evaluate our ASP formulation with the clingo solver [1, 3], on vari-
ous network topologies and policy configurations. Our preliminary result is promising.
Clingo can correctly recognize oscillation problem in all cases within 1 minute. The
solution time also scales well with the size of the network. All the experiments are per-
formed on the macOS platform with 3.4 GHz Intel Core i5 processor and 16 GB 2400
MHz DDR4 RAM.

Setup We use the popular GT-ITM tool [8] to generate various Internet-like topologies
— 2-level hierarchical graphs where the top level mimics a set of well connected net-
work service providers, and the second layer represents smaller providers that access
(and thus are customers of) the top providers. Compared to the actual Internet topol-
ogy inferred from real-world network traffic, GT-ITM has the advantage of generating
topologies of various sizes, allowing us to study the scalability of our ASP formulation.
Specifically, we generate six topologies with 1000, 2000, 4000, 6000, 8000, 10000
nodes; 5092, 10304, 20766, 31595, 42880, 54954 edges; and a node-to-edge ratio of
0.196, 0.194, 0.192, 0.190, 0.187 and 0.182, respectively.

On every GT-ITM topology, we randomly pick a node as the destination of inter-
est, and populate the rest of the nodes with all possible paths to that destination. The
policy configurations we embed in the topology include three scenarios: In the “good”
scenario, all paths are permitted and shortest path policy is used to rank the permit-
ted paths. In the “disagree” scenario, we embed circular ranking (similar to Figure 1
(left)) between two randomly picked neighbors and use shortest path for the rest of the
nodes. In the last “bad” scenario, we embed the circular ranking of Figure 1 (left). The




bad configuration is known to exhibit permanent route oscillation while the disagree
scenario only oscillates under certain ordering of route announcement exchanges.
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Fig. 4: ASP scales gracefully: the searching
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Correctness and performance Using the analysis method described in § 3, clingo
correctly recognizes the good, disagree, and bad policies on the graph with 1000 nodes
and 5092 edges. The solution times for all three cases are depicted in Figure 3: we
plotted the average running time (the box height) and the standard deviation (the bar
length) for 10 runs. The solution time on different cases are very close — 2.843s, 2.850s
and 2.846s for good, disagree and bad case, respectively.

Scalability Our formulation also scales gracefully. Figure 4 shows the searching time
for the disagree case on various topology sizes: as the network size increases from 2000
nodes and 10304 edges to 10000 nodes and 54954 edges, clingo search time grows
linearly from 6.578s to 34.786s. Each data point in the figure is averaged on 3 runs.
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