A Semantic Approach to Modularizing

SDN Software

Anduo Wang (adw@temple.edu), [emple University

motivation background: residue method
today, the onus of coordinating SDN software residue represents the integrity constraint’s effect
falls on the admin to write modular programs on Fhe Qetwork .data |
- modularization prefixed in specific programming - integrity constraint as the subsuming clause
constructs varies from one DSL to another - network state (negated relation) as the subsumed clause
- manual (control flow) composition relies on the - the fragment at the bottom of refutation tree

internalized knowledge of experienced admin
making modularization an architectural primitive

of systems organized around data flow

- data-flow modularization architecture in pre-SDN era
- X-Kernel, Click, XORP, layering, declarative networking ...

- data-flow architecture for SDN?

- SDN building blocks (modules) are extremely flexible and
keep evolve — conflicts among modules?

firewall integrity constraint flow data

« flow(EX,Y), block(X,Y) — flow(34,H,,H3)

IoN

{F=34, X=H,,Y=Hj5}

< block(H1,H3)

refutation tree for
partial subsumpt

- interact in arbitrary \.Nays — not terminate! | flow(34,H,H3) {— block(H |,H3)}
towards a modularized data-flow architecture
- software as semantic units that maintain properties - residue represents the firewall’s effect on network flow
- consistency / termination by semantic analysis flow(34, Hi,H3) is allowed only if =block(H|,H3) (when compliant)
refine refine
A —adil
property
violated? modularized data-floy architecture
(integrity
constraint p) residues for each N0 normalized residues no
k network e module (p, d) N L N
state n rw s vdeds. d{...;ri;...}, Q di{headx+body}, op - 2 e 9
reconfigure / mo‘ . ? Mk, o —— 2 .. %\ S = O
(update maintains pk = ecfie e & = = | 0
relational Mic+| ~ [...,opi; ...] : 7es vkl (k#l).diand=2 A 3)0)_ 0
data d) 0.0 - ri: the effect of - - every di is 8 > ; |
ot dul > module i on d Y associated with a P % O =
assume minimal modadu e§ 'E - op:: the update that g unique residue .= & %O
- all network state as relations ' astores the value Z é g 92 0
- reconfigure is minimal ul e O {he.adw—bodyk.}, O S c o
(smallest relational updates © FO be . Y - a single operation 2 S
that restore a property) consistent with r; OPk
residue generator consistency and termination analyzer
given modules x,y consistency
- Px:integrity constraint imposed by x - modules agree on one single unique operation over the network (data)
- dy : (derived) network data updated by y - when modules are minimal, their updates are characterized by their residues —
- n :(underlying) network data shared by all logical spec of what constitutes valid network state (after updates)

- analyze consistency by residues: modules are consistent if
- either all module’s residues are redundant (always evaluates to true, or maximal)
— no interaction between the module and d — except one module’s residue
—> I'xy - or, any residues that are not redundant are logically equivalent

termination
- the triggering graph among modules are acyclic

find residue ryy — X’s impact over y

P~ partial

n— subsumption

restricting

- ' n=>
0 I'xn to dy

impact of x impact of x . S d | . o
over the entire over data - derive triggering relations by analyzing the modules’ residues

network n relevant to y - X (dx{headx+bodyy}) triggers y (dy{...}) if headx n dy # @

example: consistency analysis with residues ?svi‘li?eﬂfiilié‘ﬂg I%fjrsez
fwi module — firewall applied in slice I: (ol 51 evaluates to true
prwl ¢ flow (EX,Y), block(X,Y) where —— rfwin: flow(FX,Y){<block(EX,Y),

flowi(FX,Y) « flow(FX,Y), slice/(X,Y) flow(FX,Y){block(FX,Y), slice; (X,Y)} — slice1 (X,Y),slice2(X,Y)}

/ _
s2 module — manage flow of slice 2: AR fiewall in isolated slices will
d2 flow2(FX,Y) ¢ flow(EX,Y), slicez2(X,Y) normalized residue not affect one another

