
consistency and termination analyzerresidue generator

modularized data-flow architecture
normalized residues
…
dk{headk←bodyk}, op
…

∀k,l (k≠l).dk∧dl=∅

- every dk is
associated with a
unique residue
{headk←bodyk},

- a single operation
opk

Anduo Wang(adw@temple.edu), Temple University

A Semantic Approach to Modularizing
SDN Software

motivation
today, the onus of coordinating SDN software
falls on the admin to write modular programs
- modularization prefixed in specific programming

constructs varies from one DSL to another
- manual (control flow) composition relies on the

internalized knowledge of experienced admin
making modularization an architectural primitive
of systems organized around data flow
- data-flow modularization architecture in pre-SDN era
- x-Kernel, Click, XORP, layering, declarative networking …

- data-flow architecture for SDN?
- SDN building blocks (modules) are extremely flexible and

keep evolve — conflicts among modules?
- interact in arbitrary ways — not terminate?

towards a modularized data-flow architecture
- software as semantic units that maintain properties
- consistency / termination by semantic analysis

background: residue method
residue represents the integrity constraint’s effect
on the network data
- integrity constraint as the subsuming clause
- network state (negated relation) as the subsumed clause
- the fragment at the bottom of refutation tree

- residue represents the firewall’s effect on network flow
 flow(34, H1,H3) is allowed only if ¬block(H1,H3) (when compliant)

flow(34,H1,H3) {← block(H1,H3)}

← flow(F,X,Y), block(X,Y) ← flow(34,H1,H3)

← block(H1,H3)

{F=34, X=H1,Y=H3}

re
fu

ta
tio

n
tr

ee
 fo

r
pa

rt
ia

l s
ub

su
m

pt
io

n

flow datafirewall integrity constraint

residue

reconfigure
(update

relational
data d)

property
violated?
(integrity

constraint p) network
state n

re
si

du
e

ge
ne

ra
to

r

co
ns

is
te

nc
y

an
al

yz
er

te
rm

in
at

io
n

an
al

yz
er

residues for each
module (p, d)
∀d∈ds. d{…; ri;…},

 […,opi; …]
- ri: the effect of

module i on d
- opi: the update that

restores the value
of d to be
consistent with ri

{

residues

…

mk-1

module mk,
maintains pk

mk+1

…

oracle

yes

nono

refine refine

da
ta

-fl
ow

 e
xe

cu
tio

n
(n

o
co

nt
ro

l fl
ow

 s
pe

c
—

 m
as

te
r

pr
og

ra
m

 —
 is

 n
ee

de
d)

yes

given modules x,y
- px : integrity constraint imposed by x
- dy : (derived) network data updated by y
- n : (underlying) network data shared by all

find residue rx,y — x’s impact over y
px

n
partial

subsumption rx,n
restricting
rx,n to dy

rx,y

impact of x
over the entire

network n

impact of x
over data

relevant to y

fw1 module — firewall applied in slice 1:
pfw1 ← flow1(F,X,Y), block(X,Y) where
 flow1(F,X,Y) ← flow(F,X,Y), slice1(X,Y)

s2 module — manage flow of slice 2:
ds2 flow2(F,X,Y)← flow(F,X,Y), slice2(X,Y)

consistency
- modules agree on one single unique operation over the network (data)
- when modules are minimal, their updates are characterized by their residues —

logical spec of what constitutes valid network state (after updates)

- analyze consistency by residues: modules are consistent if
- either all module’s residues are redundant (always evaluates to true, or maximal)

— no interaction between the module and d — except one module’s residue
- or, any residues that are not redundant are logically equivalent

termination
- the triggering graph among modules are acyclic
- derive triggering relations by analyzing the modules’ residues
- x (dx{headx←bodyx}) triggers y (dy{…}) if headx ∩ dy ≠ ∅

rfw1,n:
flow(F,X,Y){←block(F,X,Y), slice1(X,Y)}

rfw1,s1:
flow(F,X,Y){←block(F,X,Y),
 slice1(X,Y),slice2(X,Y)}
≡ flow2(F,X,Y){}

when slice1 and 2 are
isolated, residue rfw1,s2

evaluates to true

firewall in isolated slices will
not affect one another

example: consistency analysis with residues

 assume minimal modules
- all network state as relations
- reconfigure is minimal

 (smallest relational updates
 that restore a property)

normalized residue

