
A Semantic Approach to Modularizing SDN Software

Anduo Wang
Temple University

1. PROBLEM STATEMENT
Software-defined networking (SDN) refactors the dis-

tributed network protocols in the network into an ensemble
of centralized programs running at a server (controller) that
is separate from the network, creating a rare opportunity to
simplify network management with modern software engi-
neering. Yet the SDN software architecture, which often
requires coordination among multiple entities over shared
states, remains monolithic. The SDN controllers, or network
operating systems [4, 8], while exposing to control software
a uniform programming interface that abstracts away details
of the network hardware, fall short in providing the operating
system functionality of coordination among those software.
The onus of combining multiple control software that collec-
tively drive the behavior of a single network is falling on the
admin to write modular programs. Modular programming,
though a natural choice at first glance, often prefixed [3, 11]
modularization support in the language features tailored to
a particular task. The modular composition itself is tightly
coupled with the code that achieves the individual target
task, and determining the composition requires clear under-
standing of the joint intent of every components. Moreover,
modular programming solutions, driven by ad hoc require-
ments lack clear direction and foresight, cannot anticipate
future needs, in brief, will not give true modularity to the
extremely flexible and ever evolving SDN.

To bring modularity to SDN software, in this poster, we
advocate a drastically different approach, a shift in SDN
software architecture. Rather than embedding modulariza-
tion in user-supplied modular software, we propose to real-
ize modularization through a distinct architectural primitive
implemented at the controller that, decoupled from individ-
ual software component, promotes, enforces, and automati-
cally determines modularization. Making modularization an
architectural primitive yields solutions to multiple problems.
Simplify network management. A truly modular SDN archi-
tecture makes the SDN software easier to understand, reuse,
and extend. A highly modular control plane is also more
configurable and flexible. Independent evolution. Modular-
ization as a distinct primitive frees the component modules
from committing to one “right” programming platform that
fits all. More importantly, it enables independent evolution
of the component software, the conceptual model, and the
language abstractions. Incremental deployment. New con-
trol software or new modularization principle can be intro-
duced without retrofitting the rest of the system.

Of course, modularization as an architectural primitive
has been proposed in the past, including layering, software
router platforms such as x-Kernel, Click, XORP, and declar-
ative networking [6, 7, 5, 10]; but all these solutions are
based on data flow organizational principle that decomposes
the software system into parts among which certain data —
packets, routes — flow. A data abstraction which, essential
to the data flow principle, agreed by every single module in
the extremely flexible and evolving SDN, however, is un-
likely. To identify a flexible organizational principle, then,
is the first key barrier to modularizing SDN software. Can
we define a simple yet powerful interface along which mean-
ingful composition can be determined without restricting the
flexibility in programming individual software component?
A second key barrier is determining the meaningful modu-
larization. Can we automatically discover the right compo-
sition without relying on the internalized knowledge of expe-
rienced admin who clearly understands the joint intent of ev-
ery module? Finally, can we put the principle into practical
use via a controller service? Can we extend an SDN con-
troller to enable high-level control software for drastically
different purposes while at the same time enforcing mean-
ingful composition?

We argue that these barriers, while ambitious, are solv-
able. Moreover, the solutions will shed light on SDN ab-
stractions, guide future design, and improve understanding
of dependencies in SDN networks. As a first step towards
this goal, this poster will present the design of semantics
flow, an organizational principle centered around network
semantics — logical properties managed by individual mod-
ules. As opposed to data flow principle that breaks the sys-
tem into parts among which some form of data — pack-
ets, routes — flow, semantics flow decomposes the network
into semantic units related by logical implication. Lever-
aging the author’s recent work on database defined net-
work [12], a unique SDN architecture that utilizes a standard
SQL database as “the” controller to manage the network
with highly customizable control plane abstractions and a
open controller runtime, making it a convenient platform to
implement the modularization service, we discuss the imple-
mentation of semantics flow as a controller service.

2. A SEMANTIC APPROACH

Semantics flow
Our first step is to identify a task-agnostic organizational

principle in which to handle and compose control modules
in a uniform manner. We build on the insight that essential

1



monitor network

reconfigure network

invariant i

update u

control
module
m

task-wide
functionality

composition
interface

violation

repair violation

Figure 1: A generic model of SDN control module

to modular composition is not the different form of network
abstractions used to realize a semantic property, but the prop-
erty itself expressible in standard logic. In other words, we
treat the software components as semantic units, and we only
need to standardize the way we handle their semantics.

Figure 1 depicts a generic model of a control module m
that operates over some network state s, describing a mod-
ule’s semantic property. The composition interface of m
consists of two parts: the invariant i describes the semantics
— network properties — of the target task managed by the
module, is taken by the module as input that (when violated)
triggers repairing update; the updates u describe the affects
of the module on the rest of the network and are generated
as output that restore the invariant property. Both i and m
refer to states of the network s. Intuitively, m operates in a
control loop — it continuously monitors the network states
s through i, whenever a violation of i is detected, it recon-
figures s to restore the invariant by generating some update
u.

Determining Semantics Flow
In addition to promote and enforce modularity, we de-

velop automated reasoning method that automatically de-
termines meaningful composition. We first observe that
the crux to a coherent SDN control plane — a set of well
formed modules that collectively maintain a consistent net-
work state — is to coordinate the modules to respect the se-
mantic properties of every individual modules such that the
updates pushed by one will not permanently hurt the prop-
erties of another. To capture this intuition, we introduce the
notion of semantics dependency: a module depends on an-
other if the maintenance of its property logically implies the
maintenance of the property of the second.

More importantly, we can recast this as the (database) ir-
relevant update problem. The idea is that given two modules
x and y, and some shared network states S (as shown in Fig-
ure 1); we represent s as database base tables (facts), and
formalize x and y as a pair of database programs that con-
tinuously query (monitor) and update (reconfigure) the base
tables s. In the database terms, x depends on y if the output
of x’s query — a database view — can be affected by y’s up-
date program, but x’s update will never alter y’s query result

— it thus suffices to check whether x’s update is irrelevant to
y’s query.

Armed with the notion of semantic dependency and its
formulation as a database irrelevant update problem, we can
automatically determine semantic dependency by database
irrelevant reasoning [1, 9, 2], a satisfiability technique that
checks irrelevant updates. Once we generate the dependency
graph containing all semantic dependencies among the mod-
ules, we can run a topological sort to produce a hierarchy
of modules, in such a hierarchy each layer enriches and de-
pends on the properties maintained by the ones beneath it.

Database implementation
Having pinned down the semantics flow principle, our

goal is to implement a controller service that enforces mod-
ular composition of disparate control software with correct-
ness guarantee. We leverage our previous work Ravel [12],
a database-defined network that utilizes a standard SQL
database as “the” highly-customizable controller to manage
the network. Ravel features a plain control plane abstrac-
tions and orchestrates control modules by user-defined pri-
ority. We plan to enhance Ravel orchestration service by in-
tegrating irrelevant update reasoning, to automatically com-
bine modules by the semantics flow principle.

3. REFERENCES
[1] BLAKELEY, J. A., COBURN, N., AND LARSON, P.-V. Updating derived

relations: Detecting irrelevant and autonomously computable updates. ACM
Trans. Database Syst. 14, 3 (Sept. 1989), 369–400.

[2] ELKAN, C. Independence of logic database queries and update. In Proceedings
of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 1990), PODS ’90, ACM, pp. 154–160.

[3] FOSTER, N., GUHA, A., REITBLATT, M., STORY, A., FREEDMAN, M. J.,
KATTA, N. P., MONSANTO, C., REICH, J., REXFORD, J., SCHLESINGER, C.,
WALKER, D., AND HARRISON, R. Languages for software-defined networks.
IEEE Communications Magazine 51, 2 (2013), 128–134.

[4] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO, M., MCKEOWN,
N., AND SHENKER, S. Nox: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev. 38, 3 (July 2008), 105–110.

[5] HANDLEY, M., HODSON, O., AND KOHLER, E. Xorp: An open platform for
network research. SIGCOMM Comput. Commun. Rev. 33, 1 (Jan. 2003), 53–57.

[6] HUTCHINSON, N., AND PETERSON, L. Design of the x-kernel. In Symposium
Proceedings on Communications Architectures and Protocols (New York, NY,
USA, 1988), SIGCOMM ’88, ACM, pp. 65–75.

[7] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND KAASHOEK, M. F.
The click modular router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297.

[8] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J., POUTIEVSKI, L.,
ZHU, M., RAMANATHAN, R., IWATA, Y., INOUE, H., HAMA, T., AND
SHENKER, S. Onix: a distributed control platform for large-scale production
networks. In Proceedings of the 9th USENIX conference on Operating systems
design and implementation (2010), OSDI’10.

[9] LEVY, A. Y., AND SAGIV, Y. Queries independent of updates. In Proceedings
of the 19th International Conference on Very Large Data Bases (San Francisco,
CA, USA, 1993), VLDB ’93, Morgan Kaufmann Publishers Inc., pp. 171–181.

[10] LOO, B. T., HELLERSTEIN, J. M., STOICA, I., AND RAMAKRISHNAN, R.
Declarative routing: Extensible routing with declarative queries. In Proceedings
of the 2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (New York, NY, USA, 2005),
SIGCOMM ’05, ACM, pp. 289–300.

[11] REICH, J., MONSANTO, C., FOSTER, N., REXFORD, J., AND WALKER, D.
Modular SDN Programming with Pyretic. USENIX ;login 38, 5 (October 2013).

[12] WANG, A., MEI, X., CROFT, J., CAESAR, M., AND GODFREY, B. Ravel: A
database-defined network. In Proceedings of the Symposium on SDN Research
(New York, NY, USA, 2016), SOSR ’16, ACM, pp. 5:1–5:7.

2


