
Sarasate: A Strong Representation System for Networking
Policies

Bin Gui, Fangping Lan, Anduo Wang
Temple University

ABSTRACT
Policy information in computer networking today are hard to manage.
This is in sharp contrast to relational data structured in a database
that allows easy access. In this demonstration, we ask why cannot
(or how can) we turn network polices into relational data. Our key
observation is that oftentimes a policy does not prescribe a single
“definite” network state, but rather is an “incomplete” description
of all the legitimate network states. Based on this idea, we adopt
conditional tables and the usual SQL interface (a relational structured
developed for incomplete database) as a means to represent and
query sets of network states in exactly the same way as a single
definite network snapshot. More importantly, like relational tables
that improve data productivity and innovation, relational polices
allow us to extend a rich set of data mediating methods to address
the networking problem of coordinating polices in a distributed
environment.

CCS CONCEPTS
• Networks→ Programming interfaces; Network manageability; •
Computing methodologies→ Reasoning about belief and knowl-
edge.

KEYWORDS
Network policies, c-tables, knowledge representation

1 INTRODUCTION
Policies are a fundamental part of computer networking, and many
tools have been developed to exploit policies and/or manage them
throughout a network’s entire life cycle. Notably, higher-level pro-
gramming abstractions help the operators to realize reachability
objectives in SDNs [10, 15, 16, 19, 20, 22, 23]; intention-aware
monitoring systems leverage network-wide queries to improve mon-
itoring in programmable hardware [7, 28]; BGP configurations [4, 9,
13, 24, 26] are still the main vehicle for affecting routing — whether
in the global Internet or datacenters — whenever rich semantics
is involved; verification tools [3, 29] with varying capabilities —
expressiveness, scalability, speed — check whether the network
configurations, SDN programs, etc. actually obey the properties in
the formal specification; and synthesizers [4, 5] attempt to convert
network specification of varying forms — e.g., logical assertions,
templates — directly into a concrete implementation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8629-6/21/08. . . $15.00
https://doi.org/10.1145/3472716.3472848

Yet using and managing networking policies remain hard: One
has to fully understand the protocol mechanisms or its operating
environment to properly set policy attributes in that protocol; In
SDNs, while the goal is to simplify management, the lack of prefixed
mental model makes it more difficult for anyone who is not involved
in writing the controller program in the first place to make sense of or
debug a policy; Besides the tight coupling with network systems, in
more automated tasks like formal verification or synthesis, policies
also take on the characteristics — expression in a specialized logic
or format — of that external synthesizer or verifier that require
significant expertise. And few in the networking community question
the need for increasingly more complex and disparate structures of
policies, or the deeper integration of policies with the rest of the
system(s).

This is in contrast to data management in relational database [1]
which is notably easier: The relational data model has replaced
many non-relational application-specific data structures, it is self-
explaining and gives a common understanding of the data, thus
allowing for communication across tasks and between users; The
relational database system, in addition, while striking a promising
trade-off point between specification complexity and performance,
does not intend to be a total solution, instead, it draws a clean bound-
ary between a shared data component and the external applications,
exposes to applications an intuitive yet rigorous (SQL) interface, thus
improving productivity of application programmers, enabling inde-
pendent evolutions, and accelerating innovations. Where networking
today requires people to master more computer science skills, data-
base has already been successfully running for non-programmers
with little expertise.

So why cannot (how can) we turn network policies into data struc-
tured in a database? One difficulty with a genuine data approach
is that a policy is rarely captured in a definite network snapshot.
While existing networking approaches address this by including the
broader contexts, e.g., mechanisms, dynamics, additional models,
etc., to fully express a policy, we argue that it is probably adequate
to represent a policy by all the possible network states it admits, just
like a predicate in set theory is accurately described by the set it
corresponds to. Based on this idea, we propose relational policies,
capable of representing and processing sets of possible network
states in exactly the same way as that of a network snapshot. Cen-
tral to relational policies is a relational structure called conditional
tables [1, 2, 14] which extend regular tables with variables and con-
straints over those variables, which are operated via an interface that
is both intuitive — the familiar SQL operations, and are rigorous
— SQL operations on conditional tables are safe (deriving some in-
formation only if it is really in some legitimate network state) and
complete (capture all the legitimate states).

Like relational databases, relational policies seek to provide a
versatile shared policy component capable of rapid innovations, but
with the added benefit of exploiting a wealth of solutions already

https://doi.org/10.1145/3472716.3472848

SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA
Bin Gui, Fangping Lan, Anduo Wang

Temple University

developed in relational databases. Specifically, we use relational
policies to study two concrete problems: (1) local policy making
can approximate global optimal by participating in some form of
information exchange [8, 11, 12, 17, 18, 27] — but the exchange is
often low-level and ad hoc, and (2) most policy-rich tools enforce,
check, synthesize a set of coherent policies [3, 29] — but says little
about how to obtain a consistent policy from disparate sources (e.g.,
teams overseeing overlapping aspects or interacting parts of the
network) in the first place.

This demo presents sarasate, a prototype realization of our vision
atop PostgreSQL (the world’s most advanced open source relational
database) [21] and Z3 [6] (a state-of-the-art constraint solver popular
in networking). We will showcase the usefulness of sarasate by
example problems in the context of distributed policy making as
discussed in the above.

2 MOTIVATION

PL dest path
1.2.3.4 x
5.6.7.8 [123] x̸=[123]

Q(PL) dest
1.2.3.4 x=[123]
5.6.7.8 x ̸=[123]

Table 1: Conditional tables also capable of representing an-
swers to queries (on policies).

Conditional tables as policy representation. Viewing a policy by
the set of network states it permits, our goal is to find a representa-
tion for those states. In this demonstration, we advocate the use of
conditional tables. Conditional tables augment regular tables (whose
contents are concrete data) with variables and an additional column
that holds conditions over the variables. A conditional table, depend-
ing on the instantiation of the variables, can correspond to many
concrete values. In the many possible concrete instances, a tuple is
presented only if the condition holds. To see the strength of condi-
tional tables, consider a form of load balancing policy, represented
by PL, which says path [123] will be used for 5.6.7.8 only if it
is not already allocated to 1.2.3.4. Evaluating query Q (appending
constraint x=[123] in the condition column) on PL produces Q(PL)

which encodes the answer set — {⟨1.2.3.4⟩,⟨5.6.7.8⟩} (either of
the prefixes is a correct answer, but not simultaneously) — precisely.

P

S

P’

S’

SQL query

SQL query

Rep Rep

conditional
tables

regular
tables

policy

state

P P’

S

query

S’

Rep Rep

policy

state

conditional
tables

regular
tables

query

Figure 1: Conditional tables form
a strong representation for net-
work policies.

A strong policy repre-
sentation system. In ad-
dition to join and select
discussed above, all rela-
tional operators on condi-
tional tables can be per-
formed in exactly the
same way as in the case of
the usual relations. This
makes conditional tables
a strong representation
system for network poli-
cies, which we call relational policies, as follows: for a conditional
table P in Figure 1, which represents a network policy and maps to
(via variable valuations Rep) all possible legitimate states, denoted
by a set of regular tables S (= Rep(P)); given a relational query Q,

when computing the answers to Q(P), denoted by P’, we can think of
some unknown legitimate state s∈ S— as the current true network
state — being queried by Q, producing s’=Q(s); This computation is
both safe — querying a policy (Q(P)) will only return information
that does correspond to query on some legitimate state (Q(s)); and
complete — querying a policy (Q(P)) will return all the information
found by querying any legitimate state s∈ S (Q(s)). In this sense,
relational policies lift network policies to first class data objects
that can be accessed and processed in exactly the same way as the
network states they correspond to.

3 DEMONSTRATION PLAN
We implement sarasate in the PostgreSQL database (the worlds’s
most advanced open source relational database) [21]. This is espe-
cially important as it allows us to leverage existing database structure
(e.g., indexing) to accelerate evaluation. The challenge is that Post-
gres (like most databases), does not support c-tables: the existing
data fields and SQL operations do not permit c-variables, and the
default SQL evaluation cannot be easily altered to account for con-
ditions. Fortunately, we give a straightforward method to bypass
the default valuation in three steps: first, we use pure SQL to gener-
ate the regular data part of a c-table without conditions with some
key terms (constants) reserved for c-variables; next, the conditions
manipulation (including pattern matching) is implemented by a se-
quence of SQL UPDATE. finally, optional the Z3 solver [6] is invoked
to remove tuples with contradictory conditions.

Figure 2: User interface of our prototype: executing arbitrary
SQL queries over relational policies.

The result is sarasate, a prototype that retains the performance of
the Postgres as much as possible. In this demonstration, we will show,
as illustrated in Figure 2, how our prototype can handle arbitrary SQL
queries over relational policies via synthetic policies. In addition, we
will show realistic examples using the BGP ribs and updates from
the routeview project [25], including simulating BGP updates and
exchanging routing policies between neighboring ASes.

ACKNOWLEDGEMENTS
This work is supported by the National Science Foundation Award
CNS-1909450.

Sarasate: A Strong Representation System for Networking Policies SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Foundations of

Databases: The Logical Level (1st ed.). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[2] Serge Abiteboul, Paris Kanellakis, and Gosta Grahne. 1987. On the Representation
and Querying of Sets of Possible Worlds. In Proceedings of the 1987 ACM
SIGMOD International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’87). Association for Computing Machinery, New
York, NY, USA, 34–48. https://doi.org/10.1145/38713.38724

[3] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General
Approach to Network Configuration Verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (Los Angeles, CA,
USA) (SIGCOMM ’17). Association for Computing Machinery, New York, NY,
USA, 155–168. https://doi.org/10.1145/3098822.3098834

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
2016. Don’T Mind the Gap: Bridging Network-wide Objectives and Device-
level Configurations. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). ACM, New York, NY, USA, 328–341.
https://doi.org/10.1145/2934872.2934909

[5] Rudiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev.
2020. Config2Spec: Mining Network Specifications from Network Configurations.
In 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 969–984. https://www.usenix.
org/conference/nsdi20/presentation/birkner

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.
http://dl.acm.org/citation.cfm?id=1792734.1792766

[7] Sean Donovan and Nick Feamster. 2014. Intentional Network Monitoring: Finding
the Needle without Capturing the Haystack. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (Los Angeles, CA, USA) (HotNets-XIII).
Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.
org/10.1145/2670518.2673872

[8] Nick Feamster, Hari Balakrishnan, and Jennifer Rexford. 2004. Some foundational
problems in Interdomain routing. In In HotNets, 2004. (Cited on. 41–46.

[9] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. 2001. Controlling the
Impact of BGP Policy Changes on IP Traffic.

[10] Nate Foster, Arjun Guha, Mark Reitblatt, Alec Story, Michael J. Freedman,
Naga Praveen Katta, Christopher Monsanto, Joshua Reich, Jennifer Rexford,
Cole Schlesinger, David Walker, and Rob Harrison. 2013. Languages for software-
defined networks. IEEE Communications Magazine 51, 2 (2013), 128–134.
http://dblp.uni-trier.de/db/journals/cm/cm51.html#FosterGRSFKMRRSWH13

[11] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. 2002. The Stable
Paths Problem and Interdomain Routing. IEEE Trans. on Networking 10 (2002),
232–243.

[12] T. G. Griffin and G. Wilfong. 2000. A Safe Path Vector Protocol. In INFOCOM.
[13] Joel M. Halpern and Carlos Pignataro. 2015. Service Function Chaining (SFC)

Architecture. RFC 7665. https://doi.org/10.17487/rfc7665
[14] Tomasz Imieliundefinedski and Witold Lipski. 1984. Incomplete Information in

Relational Databases. J. ACM 31, 4 (Sept. 1984), 761–791. https://doi.org/10.
1145/1634.1886

[15] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor:
A Compositional Hypervisor for Software-defined Networks. In Proceedings of
the 12th USENIX Conference on Networked Systems Design and Implementation
(Oakland, CA) (NSDI’15). USENIX Association, Berkeley, CA, USA, 87–101.
http://dl.acm.org/citation.cfm?id=2789770.2789777

[16] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russ Clark. 2015. Kinetic: Verifiable Dynamic Network Control. In Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI’15). USENIX Association, Berkeley, CA,
USA, 59–72. http://dl.acm.org/citation.cfm?id=2789770.2789775

[17] Ratul Mahajan, David Wetherall, and Thomas Anderson. 2005. Negotiation-based
routing between neighboring ISPs. In NSDI.

[18] Ratul Mahajan, David Wetherall, and Thomas Anderson. 2007. Mutually con-
trolled routing with independent ISPs. In NSDI.

[19] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow: Enabling
Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38, 2 (March
2008), 69–74. https://doi.org/10.1145/1355734.1355746

[20] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software-defined Networks. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation
(Lombard, IL) (nsdi’13). USENIX Association, Berkeley, CA, USA, 1–14. http:
//dl.acm.org/citation.cfm?id=2482626.2482629

[21] PostgreSQL: The World’s Most Advanced Open Source Relational Database.
[n.d.]. https://www.postgresql.org/.

[22] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
[n.d.]. PGA: Using Graphs to Express and Automatically Reconcile Network
Policies. In SIGCOMM ’15.

[23] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Modular SDN Programming with Pyretic. USENIX ;login 38, 5
(October 2013).

[24] Y. Rekhter, T Li, and S Hares. 2006. A Border Gateway Protocol 4 (BGP-4). RFC
4271. RFC Editor. http://www.rfc-editor.org/rfc/rfc4271.txt

[25] Route Views. [n.d.]. Route Views. http://www.routeviews.org/routeviews/.
[26] Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent Vanbever, and

Olivier Bonaventure. 2020. XBGP: When You Can’t Wait for the IETF and
Vendors. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(Virtual Event, USA) (HotNets ’20). Association for Computing Machinery, New
York, NY, USA, 1–7. https://doi.org/10.1145/3422604.3425952

[27] Wen Xu and Jennifer Rexford. 2006. MIRO: Multi-path interdomain routing. In
ACM SIGCOMM.

[28] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon Thau
Loo. 2017. Quantitative Network Monitoring with NetQRE. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (Los
Angeles, CA, USA) (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 99–112. https://doi.org/10.1145/3098822.3098830

[29] Peng Zhang, Yuhao Huang, Aaron Gember-Jacobson, Wenbo Shi, Xu Liu,
Hongkun Yang, and Zhiqiang Zuo. 2020. Incremental Network Configuration
Verification. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(Virtual Event, USA) (HotNets ’20). Association for Computing Machinery, New
York, NY, USA, 81–87. https://doi.org/10.1145/3422604.3425936

https://doi.org/10.1145/38713.38724
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/2934872.2934909
https://www.usenix.org/conference/nsdi20/presentation/birkner
https://www.usenix.org/conference/nsdi20/presentation/birkner
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/2670518.2673872
https://doi.org/10.1145/2670518.2673872
http://dblp.uni-trier.de/db/journals/cm/cm51.html#FosterGRSFKMRRSWH13
https://doi.org/10.17487/rfc7665
https://doi.org/10.1145/1634.1886
https://doi.org/10.1145/1634.1886
http://dl.acm.org/citation.cfm?id=2789770.2789777
http://dl.acm.org/citation.cfm?id=2789770.2789775
https://doi.org/10.1145/1355734.1355746
http://dl.acm.org/citation.cfm?id=2482626.2482629
http://dl.acm.org/citation.cfm?id=2482626.2482629
https://www.postgresql.org/
http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.routeviews.org/routeviews/
https://doi.org/10.1145/3422604.3425952
https://doi.org/10.1145/3098822.3098830
https://doi.org/10.1145/3422604.3425936

	Abstract
	1 Introduction
	2 Motivation
	3 Demonstration Plan
	References

