
Ravel: Orchestrating Software-Defined Networks
Anduo Wang Brighten Godfrey Matthew Caesar

University of Illinois at Urbana-Champaign

1. INTRODUCTION
Software-defined networking (SDN) use cases commonly

involve multiple applications that collectively drive the net-
work. The use cases are growing bigger and more complex,
raising the need to break them into more manageable and
reusable small pieces, as the design principle of separation
of concerns suggests. Simultaneously, new business mod-
els [2] are driving the use cases beyond the control of one
single administrator. For example, providers that lease cloud
computing and network functions virtualization (NFV) are
infrastructure services that host multiple user applications.
The first SDN App store, recently announced by HP, is pro-
moting SDN innovations that span over multiple applica-
tions contributed by different parties.

These applications can form complex behaviors due to in-
teractions and interleavings that depend on the runtime dy-
namics. For example, the action of blacklisting a path by an
access control application should invoke proper response by
the routing application, such that the newly prohibited path
is avoided. In addition to coordination, conflict occurs when
applications disagree on what states are allowable: a lightly
used path favored by the load balancer application could be
rejected as unsafe by access control.

An operator could manually construct a master program
— composition of the component applications — that stat-
ically specifies the inter-application interactions [3]. This
method requires the control of a single administrator, and re-
quires the components to commit to a fixed interface. How-
ever, the SDN ecosystem today has to accommodate use
cases built from programs of disparate sources. Likewise,
privacy and trust concerns hinder the naive composition ap-
proach. Besides, the master program is tightly coupled. Ev-
ery time a new component is introduced, or an existing one
is modified, the master program, as well as all relevant com-
ponents need to be revised and tested. Programming inter-
operating software, in general, is expensive and challenging.

We propose a complementary solution — data-centric or-
chestration — that coordinates runtime interleaving by co-
ordinating data access. The data-centric solution is based
on a database-centered SDN design, inspired by a transi-
tion in online commercial data management in the 1980s. At
that time operating system and programming language tech-
niques were proven to fall short, and gave rise to database
systems [1], which later developed into the solution for coor-
dinating data access and mediating between multiple users.
Likewise, we shift to a database-centered design of SDN that
uses a standard SQL database. While the relational data rep-
resentation leads to a clean orchestration semantics, the SQL
language, together with the extensions of rule and trigger,
enables powerful interoperability with existing management

techniques and tools.
Specifically, we present Ravel, a database-centric solution

to orchestrating SDN applications. Ravel takes the entire
SDN network under the hood of a standard SQL database,
including network configurations as stored (base) tables in
the data-store, and network controls as virtual views that are
derived from the store. In Ravel, applications are programs
that interact with the network via its dedicated virtual view.
A view is a specification that is queried on the fly: a SQL
query produces the view from other views and/or the base.
For example, the access control application is a program that
reads and writes following view:
CREATE VIEW acl AS (

SELECT src, dst
FROM data_plane_base_tables ...);

Ravel views are extremely flexible and powerful. Appli-
cations can use such the view interface to introduce ad-hoc
abstractions. The administrators can use views to restrict
what an application sees. For example, the administrator
can expose to an external application an aggregate view, a
“summary” that hides the underlying sensitive data.

This relational representation leads to a clean orchestra-
tion semantics, which is implemented by two Ravel services:
vertical and horizontal orchestration. Vertical orchestration
coordinates applications by synchronizing their views. The
enabling technique is data synchronization that keeps the
views consistent as the top-level application writes its view
and/or underlying network state changes. Horizontal orches-
tration, on the other hand, uses a priority-based data-sharing
protocol that allows applications to act autonomously while
live in harmony: Upon the write initiated by an applica-
tion, the protocol engages all applications with higher pri-
ority for necessary responses, producing a collection of up-
dates. These updates are then combined and populated to all
applications with lower priority.

2. OVERVIEW
Figure 1 (left) shows the three main components of Ravel:

the users, the database, and the network. The network com-
ponent is the resources and services being controlled. The
users are a collection of applications that are controlling the
network component. An application can be a reactive pro-
gram, or a human operator who manually responds to net-
work notifications. Each application serves a particular pur-
pose, such as routing and load balancing. The database com-
ponent sitting in the middle is the engine that powers Ravel.
First, The user-facing interface is ad-hoc extensible: the ap-
plications can contribute new network abstractions called
views on the fly, and make them available to others. The
views accept application updates , which are then translated
by the database into proper network updates. Similarly, the

1



cf, tp, tm

acl rtlb

obs

cf, tp, tm

acl rtlb

PostgreSQL database:
data synchronization

+ data sharing

Network:
Mininet + POX

base tables

operation

view viewview

notification

events control

add-flow
del-flow

link 
up/down

add-flow
del-flow

link 
up/down

obs
13 2

4

Figure 1: Ravel overview

network-facing of the database component features a uni-
form abstraction called the base tables, whose purpose is to
hide implementation details. The base table interface col-
lects network events, which are then transformed into up-
dates on all the affected applications.

The ultimate goal of the Ravel database component is to
allow multiple applications to control the network via their
own user-defined views without worrying about interactions
among them. To achieve this, Ravel offers two orchestra-
tion services shown in Figure 1 (middle and right). Figure 1
(middle) shows shows vertical orchestration. It synchro-
nizes the high-level application views and the actual network
state, thus allowing the individual application to control the
network via high-level operations over the views. The two
data synchronization mechanisms we utilize are view main-
tenance (dashed lines) and view update (solid line).

Figure 1 (right) shows horizontal orchestration. It coor-
dinates operations of multiple applications with a priority-
based (pre-determined) data sharing protocol. The protocol
polices read and write on the shared table: Upon a write re-
quest (Ê), the protocol engages those with higher priorities
(Ë), and lets them check the proposed updates and make
modifications if necessary. The combined effects (Ë, Ì)
are populated back (Ì) to lower ranked applications. Af-
ter the orchestrated update transaction (Ê Ë Ì) completes,
the merged control is finally committed to the network (Í).

3. DETAILS OF DEMONSTRATION
We built a prototype of Ravel using PostgreSQL [6]

database in Mininet [4] virtual machine. We choose Post-
greSQL because, as one of the most advanced and popu-
lar database for both academic and commercial purpose, it
is a highly customizable database with many features (e.g.,
pgRouting [5] for networking).

The Ravel prototype consists of 1000+ lines of SQL code
and 100+ lines of Python code, and can be divided into four
parts: the code for the shared network states, those for in-
dividual applications (routing, load balancer, access control,
and tenants), orchestration (the vertical, horizontal orches-
tration and the combination of the two), and connection with

Ravel component Lines (#) PostgreSql features
network base 120 SQL
routing (rt) 230 SQL, rule, trigger
load balancer (lb) 30 SQL, rule
access control (acl) 20 SQL, rule
tenant (rt, lb, acl) 130 SQL, rule, trigger
orchestration 200 rule, trigger

Mininet connection
260(SQL)

102(Python) SQL, PL/Python

Table 1: Summary of Ravel components

Mininet. Table 1 summarizes for each Ravel components the
number of lines of code, and the PostgreSQL features used.

In this demo, we show Ravel under three scenarios: First,
we show the primitive operations of Ravel for individual ap-
plications, that is, the basic functionality of querying views
and updating network states. We show how to use the Ravel
database to collect the network statistics such as loads on a
certain server. We also demonstrate how individual applica-
tions modify the Mininet configuration with Ravel database
updates. In the next two scenarios, we show how Ravel or-
chestrates the operations in scenario 1. In vertical orches-
tration, we demonstrate how various applications control a
virtual network. In horizontal orchestration, we show how
the applications interact under the supervision of Ravel.

4. REFERENCES
[1] ABITEBOUL, S., HULL, R., AND VIANU, V., Eds.

Foundations of Databases: The Logical Level.
[2] HP SDN APP STORE - TRANSFORM NETWORK

ARCHITECTURE. www.hp.com/sdnappstore.
[3] JIN, X., GOSSELS, J., REXFORD, J., AND WALKER, D.

Covisor: A compositional hypervisor for software-defined
networks. In NSDI (2015).

[4] MININET. http://mininet.org/.
[5] PGROUTING PROJECT. http://pgrouting.org/.
[6] POSTGRESQL. http://www.postgresql.org.

2


