
Ravel: A Database-Defined Network

Anduo Wang

†
⇤

Xueyuan Mei

¶
Jason Croft

¶
Matthew Caesar

¶
Brighten Godfrey

¶

Temple University† University of Illinois at Urbana-Champaign ¶

ABSTRACT
SDN’s logically centralized control provides an insertion point for
programming the network. While it is generally agreed that higher-
level abstractions are needed to make that programming easy, there
is little consensus on what are the “right” abstractions. Indeed, as
SDN moves beyond its initial specialized deployments to broader
use cases, it is likely that network control applications will require
diverse abstractions that evolve over time.

To this end, we champion a perspective that SDN control fun-
damentally revolves around data representation. We discard any
application-specific structure that might be outgrown by new de-
mands. Instead, we adopt a plain data representation of the en-
tire network — network topology, forwarding, and control appli-
cations — and seek a universal data language that allows applica-
tion programmers to transform the primitive representation into any
high-level representations presented to applications or network op-
erators. Driven by this insight, we present a system, Ravel, that
implements an entire SDN network control infrastructure within a
standard SQL database. In Ravel, network abstractions take the
form of user-defined SQL views expressed by SQL queries that can
be added on the fly. A key challenge in realizing this approach is
to orchestrate multiple simultaneous abstractions that collectively
affect the same underlying data. To achieve this, Ravel enhances
the database with novel data integration mechanisms that merge
the multiple views into a coherent forwarding behavior. Moreover,
Ravel is exposed to applications through the one simple, familiar
and highly interoperable SQL interface. While this is an ambitious
long-term goal, our prototype built on the PostgreSQL database ex-
hibits promising performance even for large scale networks.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Centralized networks;
C.2.3 [Network Operations]: Network management

⇤The work was mostly done while at University of Illinois at
Urbana-Champaign.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SOSR’16, March 14–15, 2016, Santa Clara, CA.
c� 2016 ACM. ISBN 978-1-4503-4211-7/16/03 ...$15.00.

DOI: http://dx.doi.org/10.1145/2890955.2890970.

Keywords
Software-Defined Networks; SQL Database; Views; Programming
Abstraction

1. INTRODUCTION
Software-defined networks employ APIs to control switch data

planes via a logically centralized controller. This provides a plat-
form so that it is possible to write software that can control network-
wide behavior. To make that programming easy, it is generally
agreed that higher-level abstractions are needed, but there is lit-
tle consensus on what are the “right” abstractions. Frenetic [8],
Pyretic [28], and NetCore [22] introduce functional constructs that
enable modular creation of SDN control. Flowlog [23] extends this
functional abstraction to the data-plane by adding SQL-like rule
constructs. FatTire [29] and Merlin [30] add additional language-
level support for fault-tolerance and resource provisioning. On the
other hand, to address stateful middleboxes and service chains, Ki-
netic [14] and PGA [27] raise the abstraction level by stacking a
new layer of abstractions in the form of state-automata and graph
expressions.

Indeed, as the network evolves over time, the need for abstrac-
tions will likely outgrow the abstractions of the present, thus requir-
ing continual “upgrade” that extends or raises the level of existing
abstraction. Each “upgrade” incurs the tremendous effort of careful
design of a new abstraction and the engineering of the supporting
runtime. With the deployment of drastically different abstractions,
the network will be jointly driven by multiple controls created with
disparate abstractions. Orchestration of these controls across many
abstractions is thus needed. However, current approaches only offer
a fragmented solution: higher-level coordination often depends on
and is restricted to the use of certain abstractions [28, 27, 14], while
abstraction-agnostic support depends on common structures (Open-
Flow rules, network state variables) that are usually low-level [21,
32, 12].

To this end, we champion a perspective that SDN control fun-
damentally revolves around data representation. We discard any
application-specific structure that might be outgrown by new de-
mands. Instead, we adopt a plain data representation of the en-
tire network — network topology, forwarding, and control appli-
cations — and seek a universal data language that allows applica-
tion programmers to transform the primitive representation into any
high-level representations presented to applications or network op-
erators. Driven by this insight, we present a system, Ravel, that
implements an entire SDN network control infrastructure within a
standard SQL database. We take the entire SDN control system un-
der the hood of a standard SQL database, and rely on SQL for data
manipulation, the database runtime for data mediation, and propose
a novel protocol that refines the database runtime to enforce only

orchestrated execution. As a realization of this approach, Ravel of-
fers the following attractive advantages:

Ad-hoc programmable abstractions via database views. The
database view construct enables new abstractions to be constructed
ad-hoc and enables them to build on each other. For example, from
the “base tables” defining the network topology and OpenFlow for-
warding rules, one can construct a view representing a virtual net-
work that spans a subset of the topology; and one can further de-
rive a load balancer’s view of host availability within the virtual
network. These SQL views form the structure of the abstractions;
furthermore, integrity constraints over the views express high-level
policy invariants and objectives. These views and constraints can be
expressed via SQL statements and can even be constructed ad-hoc,
i.e., dynamically in the running controller.

Orchestration across abstractions via view mechanisms. Once
we have a mechanism to construct ad-hoc abstractions, we need to
coordinate across these multiple views of a single network. View
maintenance [9] and update [2, 4, 7, 5, 13] mechanisms are the
“runtime” for view abstractions, constructed through normal SQL
operations (queries and updates). First, view maintenance continu-
ously refreshes the view abstractions of a dynamic network. Sec-
ond, to translate updates in a derived view back down to a lower-
level view, Ravel allows users to define a view update policy that
governs how updates on the higher-level abstraction are realized on
the underlying data-plane via triggers, which can incorporate cus-
tom heuristics at runtime to optimize applications.

Orchestration across applications via a data mediation proto-
col. In Ravel, an orchestration protocol mediates multiple applica-
tions whose database modifications affect each other. The proto-
col assumes a simple conflict resolution strategy — an ordering of
view constraints where lower-ranked constraints yield to the higher-
ranked. Given a view update request as input, the protocol produces
as output an orchestrated update set that respects all applications
constraints (subject to conflict resolution). The orchestrated set may
append to the request additional updates for completion (e.g., by
invoking a routing application when an access control application
attempts to remove an unsafe path) or reject the update if a cohesive
update is not possible.

Network control via SQL. The entire Ravel system above is ex-
posed to application programmers and network engineers via stan-
dard SQL interfaces and database view, constraint, and trigger
mechanisms. We believe this is likely to be valuable both tech-
nically and as a way to encourage more rapid uptake of SDN. SQL
databases have proved over decades to be an effective platform for
high-level manipulation of data, and are broadly familiar (compared
to domain-specific languages, for example). Moreover, network ar-
chitects today need to combine heterogeneous data sources — net-
work forwarding rules, data flow and QoS metrics, host intrusion
alerts, and so on — to produce a cohesive view of the network and
investigate problems; this will be eased by the interoperability of
SQL databases.

We note that certain past SDN controllers have employed
databases as specific limited modules, including state distribution,
distributed processing, concurrency, and replication control. For
example, Onix [15] delegates to distributed databases for concur-
rency and replication of low-level network state in a common pre-
defined data schema. The database silently accepts and executes
transactions submitted by external control applications. Pre-SDN
era declarative networking [17, 16, 19], on the other hand, uses a
distributed query engine for fast processing of customized routing
protocols, where the database executes routing queries submitted
by end-hosts. In contrast, Ravel makes the database an active par-

ticipant that uses views to incorporate multiple high-level and low-
level abstractions of the network which are orchestrated online. In
other words, in Ravel, the database is the controller.

While this is an ambitious long-term goal, our Ravel prototype
built on the PostgreSQL database [26] exhibits promising perfor-
mance even for large scale networks. On various fat-tree (up to
5,120 switches / 196,608 links) and ISP (up to 5,939 nodes / 16,520
links) topologies, we microbenchmark Ravel delay, uncovering
the source of database overhead, showing that the most relevant
database operation (triggers) scales well to large networks. Orches-
tration of various applications scales to large network and policy
size. Ravel also integrates a classic view optimization algorithm
that accelerates view access by one to two orders of magnitude with
a small maintenance overhead.

2. OVERVIEW

cf, tp, rm

acl rtlb

obs

cf, tp, rm

acl rtlb

SQL interface

PostgreSQL runtime

Network:
Mininet + POX

base tables

operation

view viewview

notification

events control

add-flow
del-flow

link
up/down

add-flow
del-flow

link
up/down

obs
13 2

4

view view

Figure 1: Ravel overview

Figure 1 shows the main components of Ravel: the users, the
Ravel runtime, and the network. The network (bottom) is the ser-
vices and resources being controlled. The users include network
operators and a Ravel administrator that interact with the network
via the view interface (by observing database notification and in-
putting view updates). The Ravel administrator can modify the
behavior of Ravel, such as enriching the control abstractions by
adding new views or changing the orchestration behavior (database
execution model) by adding new protocols. These interactions all
take the form of normal SQL statements: queries, updates, and trig-
gers (rules).

The main body of Ravel is the runtime sitting in the middle.
It is the powering engine that enables multiple controls to jointly
drive the network. The runtime consists of two components. The
database component interfaces with the users and is the brain that
controls the variety of abstractions. The network component in-
terfaces with the network, to bridge database events (table up-
dates) and external network events (control messages and network
changes).

The database runtime operates on a set of tables — the pre-
defined base tables (§ 3) and a hierarchy of user-defined control
application views. The base tables talk to the network runtime
via SQL triggers, while the control views interface users with SQL
queries and updates. The database runtime offer two services: verti-
cal orchestration that “executes” individual application control, and
horizontal orchestration that “coordinates” the executions.

Vertical orchestration (Figure 1, middle) is implemented by a
view mechanism. View maintenance automatically refreshes ap-
plication views, while view updates translate application updates to

network controls. Modern databases are capable of automatic view
update on simple cases. For complicated scenarios that involve am-
biguity (e.g., a reachability view update corresponds to multiple vi-
able path assignments in a lower base table), the operator can direct
the database via a trigger before deployment, or alter the trigger
behavior at run time.

Horizontal orchestration is implemented by a mediation protocol.
The protocol assumes a priority ordering among the control appli-
cations. Upon an initial control request that attempts to modify the
base data, the protocol consults all higher ranked applications that
are affected, allowing them to check the proposed update and make
modifications according to its local logic. The resulting updates are
combined and populated back to the lower ranked applications. Fi-
nally, the orchestrated updates are grouped into a transaction com-
mitted to the base tables.

For example, as shown in Figure 1 (right), assume applications
lb,acl,rt each maintain a property (in the usual sense) that is
totally (pre-) ordered (left to right). Upon an initial control request
that attempts to modify data (), the protocol consults all higher
ranked applications (À) that are affected, allowing them to check
the proposed update and make modifications according to its local
logic. The resulting updates (À, Ã) are combined and populated
back (Ã) to lower ranked applications. Finally, the orchestrated
updates are grouped into a transaction (À Ã) committed to the
network (Õ).

3. ABSTRACTIONS
Shared network state: the base tables

Ravel takes the entire network under the hood of a standard rela-
tional database, where the network states and control configurations
are organized in two levels — the lower level is the tables storing
the shared network state and the higher level is the virtual views
pertaining to each application. We also include the network tables
in the base. Ravel pre-defines the network base — a set of stored
database tables — based on our extensive study of state-of-the-art
control applications. The base table schema design is as follows:

tp(sid,nid) # topology
rm(fid,sid,nid,vol) # end-to-end reachability (matrix)
cf(fid,sid,nid) # configuration (forwarding table)

tp is the topology table that stores link pairs (sid,nid). rm
is the end-to-end reachability matrix that specifies for each flow
(fid) the reachability (from sid to nid) and bandwidth (vol)
information. cf is the flow table that stores for each flow (fid)
the flow entries (the next hop nid for the switch sid). All the
attributes here are symbolic identifiers with integer type for perfor-
mance. For each attribute, Ravel keeps an auxiliary table that maps
to real-world identifiers (e.g., an IP prefix for sid and nid in cf).

Ravel base tables provide fast network access and updates while
hiding the packet processing details. They talk directly to the under-
lying network via OpenFlow. Initially, the base is loaded with the
network configurations (e.g., topology, flow tables). As the network
changes, the Ravel runtime updates the base (e.g., switches, links)
accordingly. Similarly, as the base entries for flow rules change due
to network control produced by the application, the runtime sends
the corresponding control messages to the network.

While the network base design can be expensive, we argue that
compared to the “fluid” control abstraction, it is relatively stable
and retains the schema. Thus, we view the base schema design a
one-time effort.

Application-specific policy: the SQL views
While the shared base talks continuously to the network, a sepa-

rate higher level permits abstraction pertaining to individual appli-

cations. By running SQL queries on the base, SQL views derive
from the base the data relevant to individual applications and re-
structure that data in a form that best suits the application’s logic.
SQL views allow a non-expert to add abstractions on demand, and
the resulting views are immediately usable — referenced and up-
dated via the database system runtime (§ 4). This frees users from
committing to a fixed “right model that fits all”, thus making Ravel
abstractions ad-hoc extensible as requirements evolve.

For example, a load balancer abstraction is a view lb defined by
the following SQL query.
CREATE VIEW lb AS(

SELECT nid AS sid,
count(*) AS load

FROM rm
WHERE nid IN server_list)

SQL views are also “composable”, like function composition
via procedure call, a composite view is built by a query that ref-
erences other views. In a SQL query, views are indistinguishable
from normal tables. Imagine a tenant network managed via view
tenant_policy as follows:
CREATE VIEW tenant_policy AS (

SELECT * FROM rm
WHERE host1 IN (SELECT * FROM tenant_hosts)

AND host2 IN (SELECT * FROM tenant_hosts));

tenant_policy monitors all traffic pertaining to the tenant
slice. To manage load in this slice, we built a composite view tlb
from tenant_policy, just like lb is built from the base rm:
CREATE VIEW tlb AS (

SELECT sid,
(SELECT count(*) FROM tenant_policy
WHERE host2 = sid) AS load

FROM tlb_tb);

Control loop: Monitoring and repairing policy violations with
rules/triggers. SDN application dynamics typically follow a
“control-loop”: the application monitors (reads) the network state
against its constraints, performs some computation, and modifies
(writes) the network state according to its policy. For example, a
load balancer checks traffic on servers of concern, and re-balances
traffic when overloading occurs (e.g., the load on a server exceeds
a threshold t).

Ravel allows a natural translation of application policy as in-
tegrity constraints over view data and the “control-loop” that main-
tains the policy as SQL rule processing, in the form:

ON event DO action WHERE condition

For the load balancer, its invariant is a simple constraint load <
threshold (t) over lb. Thus, we monitor the violations by a
query on lb against the constraint:
CREATE VIEW lb_violation AS (

SELECT * FROM lb WHERE load >= t);

To repair the violations, we simply empty the lb_violation
view by a DELETE operation on lb_violation. We introduce
the rule lb_repair to translate the repair onto the actual opera-
tions on lb, which simply sets the load to the default threshold:
CREATE RULE lb_repair AS

ON DELETE TO lb_violation
DO ALSO (

UPDATE lb SET load = t WHERE sid = OLD.sid);

Another example action is to move two units of flow away from
a particular server with id k:
UPDATE lb

SET load = (SELECT load FROM lb WHERE sid = k) - 2
WHERE sid = server_id;

4. ORCHESTRATION

4.1 Vertical orchestration via view mecha-
nisms

Vertical orchestration is about synchronizing the views and the
base by leveraging two view mechanisms. View mechanisms power
view-based network control on individual applications: view main-
tenance populates base dynamics to the views, and view update
translates view updates to the base (implementation). View main-
tenance is well-established, with a family of fast incremental algo-
rithms developed over a decade [34, 10, 9]. Ravel implements clas-
sic view maintenance algorithms [10, 9] that automatically optimize
application views for faster access (more in § 5, § 6). An interesting
usage of view maintenance is that an application can ask interest-
ing questions (e.g., a summary or aggregate) about it by submitting
a SQL query on its view. For example, to find overloaded servers
(exceeding some threshold t), the application simply writes:

SELECT sid FROM lb WHERE load > t;

Conversely, view update pushes the changes on the view (by the
application) back to the base (network). View update is a diffi-
cult and open research problem [13, 2, 4] because an update can
correspond to multiple translations on the underlying base. To dis-
ambiguate, Ravel relies on user input for an update policy. For
example, consider an update on lb that re-balances traffic to ran-
domly chosen lightly selected servers. Specified by the follow-
ing actions, it reduces the load on a server from OLD.load to
NEW.load by picking a server with lowest load and redirecting
the OLD.load-NEW.load oldest flows in rm to that server.

UPDATE rm
SET nid =

(SELECT sid FROM lb
WHERE load = (SELECT min (load)

FROM lb LIMIT (OLD.load - NEW.load))
LIMIT 1)

WHERE fid IN
(SELECT fid FROM rm WHERE nid = NEW.sid
LIMIT (OLD.load - NEW.load));

In general, users can program an update policy with rules of the
form:

CREATE RULE view2table AS
ON UPDATE TO view
DO INSTEAD UPDATE TABLE --- actions ---

Here, action can be an arbitrary sequence of SQL statements,
or a procedure call to external heuristics. This has the benefit of
making Ravel abstractions open. Users can dynamically control
the implementation of its high-level policy — how the view update
maps to the underlying network — by simply creating or modifying
the associated rules.

Similar to views derived directly from the base tables, nested
views can be updated to manage the underlying network states. The
update policy only needs to specify how changes on the view are
mapped to its immediate source. For example, tlb only needs an
update policy on tenant_policy, from which it is derived, and
tenant_policy will handle the mapping down to the network
base tables.

CREATE RULE tlb2tenant_policy AS
ON UPDATE TO tlb
DO INSTEAD
UPDATE tenant_policy ...;

4.2 Horizontal orchestration via mediation
protocol

Eventually, all control application operations are translated to up-
dates on the network base data. To integrate the individual controls
into a consistent base, it is sufficient to control their updates on the
shared base. To this end, Ravel enhances the database runtime with
a mediation protocol that instructs the shared data access.

The protocol offers participating applications three primitive op-
erations. (1) Propose: an application attempts a tuple insertion,
deletion, or update to its view. (2) Receive: an application observes
updates (side-effects) reflected on its view due to network updates
initiated by other participants. (3) Reconcile: an application checks
the received view updates against its policy and performs either an
accept (no violation), overwrite (to resolve a conflict), or reject (no
conflict resolution exists). A conflict occurs when an update made
by one application violates the constraints of another. Ravel adopts
a simple conflict resolution policy based on priorities. Applications
are required to provide a global ranking among all the constraints
(one application can have multiple constraints) — higher-ranked
constraints can overwrite updates from those lower-ranked when a
conflict occurs.

Starting from a consistent network state where all application
policies (invariants) are satisfied, the protocol takes an update pro-
posal and a globally agreed priority list, and produces a set of or-
chestrated updates as follows. First, Ravel computes the effects of
the proposal on other applications. A view update affects another
view if the corresponding update on the shared data item causes
modification to that view. Next, the affected applications sequen-
tially reconcile their received update against their constraints in in-
creased ranks. Finally, all the reconciled updates are merged and
form the orchestrated output set. The orchestrated output is applied
atomically as one transaction in the database, which transforms the
network from its current state to the next.

Implementing the protocol is straightforward with PostgreSQL
triggers [24, 33, 6, 33]: to enforce the priorities and properly in-
voke the overwrites, we only need to enforce the global order-
ing according to the priorities. Specifically, for each participant
Q, assume some applications P,Q and associated priorities that
satisfy p<q<r. We supplement Q with an extra priority table
q and three rules p2q, q2r, q_constraint. p2q invokes
updates at Q once P is done (status = ’off’), followed by
q_constraint that performs the local reconciliation, and q2r
(similar to p2q) that invokes the next application R.

CREATE TABLE q (counts integer, status text);

CREATE RULE p2q AS
ON UPDATE TO p
WHERE (NEW.status = ’off’)
DO ALSO INSERT INTO q values (NEW.counts, ’on’);

CREATE RULE q_constraint AS
ON INSERT TO q
WHERE NEW.status = ’on’
DO ALSO -- local reconciliation of application q;

UPDATE q SET status = ’off’;

CREATE RULE q2r AS ...

Correctness
Ravel orchestration handles two scenarios. In one, applications

are called to collaborate for a common task (e.g., when a firewall
drops an unsafe path, the routing component shall be invoked to
remove the corresponding path). In the other, independent appli-
cations are prevented from in-adversely affecting each other (e.g.,
traffic engineering and device maintenance). Combined, the goal
is to avoid partial and conflicting updates that lead a network into
an inconsistent state. Formally, a network state is consistent if it
is compliant with all the application policies. That is, consistent

Ravel component Lines (#) PostgreSQL features
network base 120 SQL
routing (rt) 230 SQL, rule, trigger
load balancer (lb) 30 SQL, rule
access control (acl) 20 SQL, rule
tenant (rt, lb, acl) 130 SQL, rule, trigger
runtime 200 rule, trigger

Mininet integration 260(SQL)
102(Python) SQL, PL/Python

Table 1: Summary of Ravel components

network states correspond to applications with invariant-preserving
views. A set of network updates potentially contributed by multiple
applications is correctly orchestrated if the set transforms a consis-
tent (i.e., correct) network state into only another consistent states.

PROPOSITION 1. Ravel orchestration preserves network con-
sistency.

PROOF. (Sketch) The data mediation protocol translates each
application update into a set of updates (contributed by all relevant
applications) which, combined, satisfy all application constraints
(subject to conflict resolution), thus preserving network consis-
tency.

5. IMPLEMENTATION
We built a prototype of Ravel using PostgreSQL [26] and

Mininet [20]. PostgreSQL is an advanced, open source database
popular for both academic and commercial purpose. It is highly
customizable with many useful features (e.g., pgRouting [25]) for
networking.

The prototype is implemented by 1000+ lines of SQL and 100+
lines of Python code, consisting of four components: the network
base, the control applications (routing, load balancer, access con-
trol, and tenants), the runtime, and gluing code for integration with
Mininet. Table 1 summarizes the implementation size and the Post-
greSQL features used.

During the development of the prototype, we learned two opti-
mization tactics that reflect the time-space tradeoff in a database-
centered system. First, Ravel optimizes the base table schemas
to avoid recursive path computation. By adding an additional
reachability requirement table rm and triggers that recursively re-
configure the corresponding paths on the per-switch configuration
table, higher-level views can control routing paths via non-recursive
query and update over rm. Second, Ravel optimizes the perfor-
mance of the application view by integrating a classic view mainte-
nance algorithm [10], which avoids wasteful re-computation of the
views from scratch as the network changes.

6. EVALUATION
To study the feasibility of Ravel, we run three sets of experiments

on large fat-tree and ISP network topologies. We first examine the
delay imposed by Ravel and microbenchmark database operations
for route insertion and deletion. Next, we look at the scalability in
orchestrating applications. Finally, we examine the overhead and
performance improvement from view optimizations. The results
are promising: even on a fat-tree topology with 196608 links and
5120 switches, and the largest ISP topology (Rocketfuel dataset)
with 5939 switches and 16520 links, the delay for rule/trigger and
key-value query overhead remains in the single-digit millisecond
range. All experiments were run on a 64-bit VM with a single CPU
and 7168M base memory.

fat-tree ISP
k switches links AS# nodes links
16 320 3072 4755 142 258
32 1280 24576 3356 1772 13640
64 5120 196608 7018 25382 11292

2914 5939 16520
Figure 2: Topology setup: (left) fat-tree with k pods, (right) four
Rocketfuel ISP topologies with varying size.

Network setup
Figure 2 shows the three fat-tree topologies and four ISP topolo-

gies (taken from the Rocketfuel [31] dataset) we use. Among them,
AS 2914 is pre-populated with a synthetic routing configuration
from Route View [1] BGP feeds.

Profiling delay
We profile and analyze the various primitive database operations

that constitute Ravel delay: pgr_routing (rt) that computes
a shortest path between two nodes, lookup ports (lk) that
fetches the outgoing port, write to table (wt) that installs
the per-switch forwarding rules, and trigger and rules (tr)
that optimize application operations and coordinate their interac-
tions. We find the delay is dominated by the routing component
(rt) and database writes (wt), which are dependent on the network
topology. The additional database overhead of lk,tr remains low
even for large network size, demonstrating good scalability. The
details of the constituted delays are shown in Figure 3.

As the network size grows for fat-tree and ISP topologies, the
delay caused by tr and wt operations increase linearly. Even
for fattree k=64, both operations only double to 5ms. While
the path-computation component rt grows and quickly dominates
Ravel delay, it can be easily replaced by a faster implementation
with better heuristics or precomputing k-shortest path. In contrast
to the network size, the growth of the policy size has a smaller effect
on the operations. This is because Ravel handles each flow_id in-
dependent of the rest of the policy space. Therefore, the scalability
study below examines only the network size.

Scaling orchestration
We measure, on increasing network sizes, Ravel’s delay in or-

chestrating applications including load balancer (lb), access con-
trol (acl), tenant network (t), and routing application (rt). acl
removes (i.e., prohibits) traffic requirements from a blacklist. lb
re-balances traffic requirements among a list of provisioned servers.
rt is the component that actually realizes the traffic requirement
with per-switch rules. Tenant network t is a 10-node full-mesh
network that controls the traffic slice pertaining to its topology.

We examine vertical and horizontal orchestration scenarios. We
use x@t to denote vertical orchestration of an application x con-
trolling a tenant network t. For horizontal orchestration, we use
x+y+... to denote applications x,y,... collectively control-
ling a network. For example, lb+acl+rt denotes the scenario
that upon a newly inserted route, load balancer is engaged first, fol-
lowed by access control, and finally by the routing application to
set up the actual path on the underlying network state. The CDF in
Figure 4 shows the overall orchestration delay in milliseconds.

We find that Ravel adds a small delay for orchestration, around
1ms for most scenarios. Delay is dominated by rt because of its
semantics. rt must compute the path and reconfigure the switches.
In contrast, acl imposes a negligible delay (<1ms) since it only
needs to read from its blacklist, i.e., a fast key-value lookup. lb
sits between these two applications and handles the extra path com-
putation to direct traffic to a less loaded server. In particular,

��

��

��

��
��
���
� ����������� ����������� �����������

�

�

�
��������� ���������� �����������

�

�

�
������� ������� �������

�
�
��
��
��
��
��

��
��
��
��
�

�

�

�

�

�

��

�

�

�

�

�

��

���������������� ����������������� ������������������� ������������������������
Figure 3: Sources of Ravel delay (ms) for route insertion and deletion.

��
����
����
����
����
��

���� �� ��� ����

��
��
�
�
�

�������

���� �� ��� ����

�������

���� �� ��� ���� �����

������� �
������
�����

���������

�
���
���
���
���
�

���� �� ���

��
��
�
�
�

������������

���� �� ���

������������

���� �� ��� ����

������������

�

��
����
������

��������
�����

�������
�������������

Figure 4: CDF of orchestration delay: normalized per-rule orches-
tration delay (ms) on various network sizes.

��

����

����

����

����

��

����� ���� �� ���

��
��
��
���
��

���������
����
�����
������
����
�����
������ ��

����

����

����

����

��

��������������� �� ���

�����

��������� �� ��� ����

��������
�������
�������
�������
�������
�������
�������

Figure 5: (a) CDF of querying (ms) on a view and its materialized
equivalent. (b,c) CDF of maintenance delay (ms).

lb+acl+rt is bound by rt, and x@t is almost identical to that
of x.

Optimizing application views
Ravel optimizes application views by translating them into equiv-

alent materialized tables that offer faster access with small over-
head. Figure 5 (a) compares the performance (query delay) on a
load balancer view (v) and its materialized version (o) for three
policy sizes (10,100,1000). Queries on optimized views (blue
shade) are an order of magnitude faster (.1ms vs 1-2ms). As pol-
icy size grows (from 10 to 1000), the performance gain is more
obvious. Figure 5 (b,c) shows the overhead of view maintenance,
measured on three fat-tree topologies (k=16,32,64) and two sce-
narios: updates (deletion and insertion) to lb_tb and rm. In all
cases, view maintenance incurs small delay (single-digit ms) that
scales well to large network size.

7. RELATED WORK
Declarative networking. In the pre-SDN era, declarative network-
ing [17, 16, 19] — a combined effort of deductive database (recur-
sive datalog) and distributed system (distributed query optimiza-
tion) research — uses a distributed recursive query engine as an
extensible and efficient routing infrastructure. This allows rapid im-
plementation and deployment of new distributed protocols, making
it an alternative design point that strikes a balance among its peers
like overlay [18] and active networks [11]. Ravel differs in every
aspect. We build on relational database research, making novel use

of SQL views and contributing new data mediation techniques, with
target usage — mediating applications with higher-level user sup-
port in a centralized setting — better described in network OS and
SDN programming APIs.

Database usage in network controllers. The use of database and
the notion of network-wide views are not unfamiliar. Advanced
distributed controllers such as Onix [15] and ONOS [3] provide
consistent network-wide views over distributed network elements
and multiple controller instance. Unlike Ravel, these systems use
the database as a mere transactional repository to “outsource” state
management for distributed and replicated network states, and treat
the database as a passive recipient that only executes queries and
transactions. Furthermore, the network-wide views are often pre-
defined by the system (e.g., Onix’s NIB APIs with fixed schemas for
all control applications), making little use of user-centered database
views. In Ravel, the database is the reactive controller with user-
centered database views: control applications and the dynamic or-
chestrations are moved into the database itself, while SQL offers a
native means to create and adjust application-specific ad-hoc views.

8. CONCLUSION
We present a novel SDN design, Ravel, based on a standard SQL

database. With the simple and familiar SQL query, constraints, and
triggers, non-experts can rapidly launch, modify, and switch be-
tween abstractions that best fit their needs. The database runtime,
enhanced with view mechanisms and a data mediating protocol, al-
lows multiple disparate applications — collaborative or competi-
tive — to collectively drive the network in a user-defined mean-
ingful way. A prototype built on the PostgreSQL database exhibits
promising performance even for large scale networks.

9. REFERENCES
[1] Route views project. http://www.routeviews.org.
[2] BANCILHON, F., AND SPYRATOS, N. Update semantics of

relational views. ACM Trans. Database Syst. 6, 4 (Dec.
1981), 557–575.

[3] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y.,
KOBAYASHI, M., KOIDE, T., LANTZ, B., O’CONNOR, B.,
RADOSLAVOV, P., SNOW, W., AND PARULKAR, G. Onos:
Towards an open, distributed sdn os. In Proceedings of the
Third Workshop on Hot Topics in Software Defined
Networking (New York, NY, USA, 2014), HotSDN ’14,
ACM, pp. 1–6.

[4] BOHANNON, A., PIERCE, B. C., AND VAUGHAN, J. A.
Relational lenses: A language for updatable views. In
Proceedings of the Twenty-fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (New York, NY, USA, 2006), PODS ’06,
ACM, pp. 338–347.

[5] DAYAL, U., AND BERNSTEIN, P. A. On the updatability of
relational views. In Proceedings of the Fourth International
Conference on Very Large Data Bases - Volume 4 (1978),
VLDB ’78, VLDB Endowment, pp. 368–377.

[6] DAYAL, U., HANSON, E. N., AND WIDOM, J. Active
database systems. In Modern Database Systems (1994),
ACM Press, pp. 434–456.

[7] FAGIN, R., ULLMAN, J. D., AND VARDI, M. Y. On the
semantics of updates in databases. In Proceedings of the 2Nd
ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (New York, NY, USA, 1983), PODS ’83,
ACM, pp. 352–365.

[8] FOSTER, N., GUHA, A., REITBLATT, M., STORY, A.,
FREEDMAN, M. J., KATTA, N. P., MONSANTO, C., REICH,
J., REXFORD, J., SCHLESINGER, C., WALKER, D., AND
HARRISON, R. Languages for software-defined networks.
IEEE Communications Magazine 51, 2 (2013), 128–134.

[9] GUPTA, A., AND MUMICK, I. S. Materialized views. MIT
Press, Cambridge, MA, USA, 1999, ch. Maintenance of
Materialized Views: Problems, Techniques, and
Applications, pp. 145–157.

[10] GUPTA, A., MUMICK, I. S., AND SUBRAHMANIAN, V. S.
Maintaining Views Incrementally. In SIGMOD (1993).

[11] HICKS, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A.,
AND NETTLES, S. Plan: A programming language for active
networks. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (1998), pp. 86–93.

[12] JIN, X., GOSSELS, J., REXFORD, J., AND WALKER, D.
Covisor: A compositional hypervisor for software-defined
networks. In NSDI (2015).

[13] KELLER, A. M. Updating relational databases through
views, 1995.

[14] KIM, H., REICH, J., GUPTA, A., SHAHBAZ, M.,
FEAMSTER, N., AND CLARK, R. Kinetic: Verifiable
dynamic network control. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2015), NSDI’15,
USENIX Association, pp. 59–72.

[15] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN, R., IWATA, Y.,
INOUE, H., HAMA, T., AND SHENKER, S. Onix: a
distributed control platform for large-scale production
networks. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation (2010),
OSDI’10.

[16] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E.,
HELLERSTEIN, J. M., MANIATIS, P., RAMAKRISHNAN,
R., ROSCOE, T., AND STOICA, I. Declarative networking:
Language, execution and optimization. In Proceedings of the
2006 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2006),
SIGMOD ’06, ACM, pp. 97–108.

[17] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E.,
HELLERSTEIN, J. M., MANIATIS, P., RAMAKRISHNAN,
R., ROSCOE, T., AND STOICA, I. Declarative networking.
In Communications of the ACM (2009).

[18] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS,
P., ROSCOE, T., AND STOICA, I. Implementing Declarative
Overlays. In SOSP (2005).

[19] LOO, B. T., HELLERSTEIN, J. M., STOICA, I., AND
RAMAKRISHNAN, R. Declarative routing: Extensible
routing with declarative queries. SIGCOMM Comput.
Commun. Rev. 35, 4 (Aug. 2005), 289–300.

[20] MININET. http://mininet.org/.
[21] MOGUL, J. C., AUYOUNG, A., BANERJEE, S., POPA, L.,

LEE, J., MUDIGONDA, J., SHARMA, P., AND TURNER, Y.
Corybantic: Towards the modular composition of sdn control
programs. In Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks (New York, NY, USA, 2013),
HotNets-XII, ACM, pp. 1:1–1:7.

[22] MONSANTO, C., FOSTER, N., HARRISON, R., AND
WALKER, D. A compiler and run-time system for network
programming languages. SIGPLAN Not. 47, 1 (Jan. 2012),
217–230.

[23] NELSON, T., FERGUSON, A. D., SCHEER, M. J. G., AND
KRISHNAMURTHI, S. Tierless programming and reasoning

for software-defined networks. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-4,
2014 (2014), pp. 519–531.

[24] PATON, N. W., AND DÍAZ, O. Active database systems.
ACM Comput. Surv. 31, 1 (Mar. 1999), 63–103.

[25] PGROUTING PROJECT. http://pgrouting.org/.
[26] POSTGRESQL. http://www.postgresql.org.
[27] PRAKASH, C., LEE, J., TURNER, Y., KANG, J.-M.,

AKELLA, A., BANERJEE, S., CLARK, C., MA, Y.,
SHARMA, P., AND ZHANG, Y. Pga: Using graphs to express
and automatically reconcile network policies. In Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication (New York, NY, USA, 2015),
SIGCOMM ’15, ACM, pp. 29–42.

[28] REICH, J., MONSANTO, C., FOSTER, N., REXFORD, J.,
AND WALKER, D. Modular sdn programming with pyretic.

[29] REITBLATT, M., CANINI, M., GUHA, A., AND FOSTER, N.
Fattire: Declarative fault tolerance for software-defined
networks. In Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(New York, NY, USA, 2013), HotSDN ’13, ACM,
pp. 109–114.

[30] SOULÉ, R., BASU, S., KLEINBERG, R., SIRER, E. G., AND
FOSTER, N. Managing the network with merlin. In
Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks (New York, NY, USA, 2013), HotNets-XII, ACM,
pp. 24:1–24:7.

[31] SPRING, N., MAHAJAN, R., AND WETHERALL, D.
Measuring ISP topologies with Rocketfuel. In ACM
SIGCOMM (2002).

[32] SUN, P., MAHAJAN, R., REXFORD, J., YUAN, L., ZHANG,
M., AND AREFIN, A. A network-state management service.
In Proceedings of the 2014 ACM Conference on SIGCOMM
(New York, NY, USA, 2014), SIGCOMM ’14, ACM,
pp. 563–574.

[33] WIDOM, J., AND CERI, S. Active database systems:
Triggers and rules for advanced database processing.
Morgan Kaufmann, 1996.

[34] ZHUGE, Y., GARCIA-MOLINA, H., HAMMER, J., AND
WIDOM, J. View maintenance in a warehousing
environment. ACM SIGMOD Record 24, 2 (1995), 316–327.

